当前位置: 首页 > 专利查询>中山大学专利>正文

一种微米/纳米二级表面阵列及其制备方法和用途技术

技术编号:8802194 阅读:196 留言:0更新日期:2013-06-13 06:32
本发明专利技术公开了一种“仙人掌”微纳二级阵列结构及其制备方法和用途。该微纳二级阵列是由纳米尺寸的Cu2S纳米线生长在微米尺寸的Cu2S球冠表面,Cu2S球冠又周期性的分布在衬底的表面形成的。本发明专利技术的Cu2S“仙人掌”微纳二级阵列,相比于普通的平面纳米线阵列,进一步增大了比表面积,增大了载流子产生的几率,同时,当入射光角度发生改变时,由于纳米线和光线的相对位置变化较小,光吸收变化较小,使其光吸收在较广的光入射角度内保持优良的性能。在太阳能领域应用时,可以避免随着太阳位置改变性能降低,或需不断随光照角度变化而改变器件角度,导致器件结构的复杂性及成本的增加。

【技术实现步骤摘要】

本专利技术属于材料表面光吸收应用领域,具体涉及一种由Cu2S “仙人掌”形成的微米/纳米二级阵列及其制备方法和用途,该“仙人掌”微纳二级阵列相比于平面纳米线阵列,具有更大的比表面积。该种结构在光的入射角度发生变化时,仍然保持良好的表面光吸收性能,可以广泛应用在光伏、光热能源转换领域。同时该种制备方法具有成本低、方法简单、适合大面积生长制备等优点。
技术介绍
纳米材料的特殊性质往往与它的形貌和尺寸有很大关系,其中一维纳米材料尤其是一维半导体纳米阵列由于具有薄膜所不具备的优点,在光电转换应用中受到较多的关注。同薄膜半导体纳米材料相比,一维半导体纳米阵列具有以下优点:该阵列的晶体点阵择优取向能够减小点阵畸变,有效地减少光反射,从而增加对光的吸收;该阵列能够充分利用阵列直径较小,光线的吸收发生在阵列的轴向,且阵列之间的距离小于光波波长来增大对光的吸收;该阵列的比表面积大,能够增大载流子产生的几率,且载流子的输运发生在径向,减少了空穴和电子复合的几率,能够实现光电转换效率的大幅提高。为了研究一维半导体纳米阵列在光电转换领域的应用,人们用不同的方法制备了多种半导体纳米阵列,如纳米线、纳米柱、纳米棒等,并对其光吸收性能、光电转换性能、光电化学性能等进行研究。如Inguanta等人利用一步电沉积方法制备的CIGS纳米线阵列,该结构有助于光电流性能的提高;Zhiyong Fan等人利用电镀结合VLS的方法制备出的顶端直径较小,底端直径较大的Ge纳米柱阵列,该阵列在波长300-900nm的平均吸收率高达99%,光吸收性能得到了较大提高;Tak等人利用在ZnO纳米线外层再通过离子层吸附反应沉积一层CdS的方法制备的ZnO/CdS core/shell结构,对其进行光电化学性能测试,发现该结构的最大能量转换效率达到了 3.53%;Xinhong Zhao等人利用铜片热氧化得到CuO纳米线,再在纳米线上滴醋酸锌,加热得到的CuO/ZnO core/shell结构,光解制氢效率最大可达0.71%。但利用这些方法制备的一维半导体纳米阵列是规则排列的,对垂直入射的光,其光吸收较薄膜的要多,但当光线的入射角度发生改变时,其光吸收性能会产生明显的降低,同时这些制备方法比较复杂,普遍存在的主要问题是难以实现大面积生产制备、制备成本较高和材料微观结构较难控制。从现有的文献来看,虽然制备出的一维半导体纳米阵列可以提高光吸收性能,但是光吸收性能随着入射光角度的变化会迅速衰减。目前还不存在一种工艺简单、制作成本较低且能够用于大面积对光线入射角度不敏感、比表面积又大的半导体纳米阵列制备的方法。
技术实现思路
为了克服上述的现有技术的缺点与不足,本专利技术的首要目的在于提供一种Cu2S “仙人掌”微纳二级阵列,该阵列能够在纳米线阵列的基础上进一步增大比表面积,且该阵列的光吸收性能对光的入射角度变化不敏感。本专利技术的另一目的在于提供上述的Cu2S “仙人掌”微纳二级阵列的制备方法,该方法具有工艺简单、成本较低、过程可控、能够进行大面积加工、对设备要求不高等优点。本专利技术的再一目的在于提供上述的Cu2S “仙人掌”微纳二级阵列的用途。本专利技术的目的通过下述技术方案实现:一种Cu2S “仙人掌”微纳二级阵列,其衬底上是导电膜,导电膜的上方是周期性分布的微米尺寸的Cu2S球冠,Cu2S球冠表面是纳米尺寸的Cu2S纳米线,Cu2S球冠的尺寸及之间空隙可以调整;所述的衬底是陶瓷、云母、高分子塑料、金属、硅片、玻璃或不锈钢片中的一种;所述Cu2Sm米线的直径为10-500nm,长度为100nm-500 μ m。所述Cu2S球冠的直径为0.5-100 μ m,球冠之间的间隔为0.01-100 μ m。上述的Cu2S “仙人掌”微纳二级阵列的制备方法,包括以下步骤:(I)在导电衬底上,通过电化学沉积,沉积具有球冠状周期性起伏结构的铜膜;(2)将沉积了铜膜的衬底与氧气/硫化氢混合气体混合,0-200°C下加热l_500h,生成上述的Cu2S “仙人掌”微纳二级阵列;步骤(I)所述的电化学沉积法为脉冲电化学沉积、恒压电化学沉积或恒流电化学沉积;所述的沉积可以是采用一种电化学沉积方法共沉积也可以是采用其中的一种以上电化学沉积方法分步沉积;步骤(2)所述的氧气/硫化氢混合气体中,硫化氢与氧气的体积比为1: (0-100)。上述的Cu2S “仙人掌”微纳二级阵列可以应用在太阳能光电、光热转换中。本专利技术相对于现有技术具有如下的优点及效果:1.本专利技术的Cu2S “仙人掌”微纳二级阵列,在纳米线阵列的基础上进一步增大了比表面积,增大了载流子产生的几率,同时,当入射光角度发生改变时,由于纳米线和光线的相对位置变化较小,光吸收变化较小,使其光吸收效率对光的入射角度不敏感,在太阳能领域应用时,可以避免随着太阳位置改变性能降低,或需不断随光照角度变化而改变器件角度,导致器件结构的复杂性及成本的增加。2.本专利技术的Cu2S “仙人掌”微纳二级阵列,因为表层为纳米线,使该阵列同时具有纳米线阵列的优点,即:纳米线直径较小,光线的吸收发生在纳米线阵列的轴向,纳米线之间的最大距离小于光波波长来增大对光的吸收;纳米线阵列的择优取向减小了点阵畸变,减小了对光的反射;且载流子的输运发生在径向,减少了空穴和电子复合的几率。3.本专利技术在电化学沉积制备的铜膜的基础上,再结合气固反应,制备Cu2S “仙人掌”微纳二级阵列,制备方法简单,成本较低,对设备要求不高。制备出的纳米阵列光吸收性能较好。4.本专利技术在电化学沉积得到的铜膜的基础上,再结合气固反应,制备Cu2S “仙人掌”微纳二级阵列,制备成本较低,制备的纳米阵列分布均匀,且由于铜膜可以在不同衬底上同时进行大面积生长,气固反应对材料的面积没有限制,可以在此基础上进行大面积Cu2S “仙人掌”微纳二级阵列的制备。5.本专利技术的Cu2S “仙人掌”微纳二级阵列,由于其较高的光吸收性能和对光入射角度的不敏感性,可以用于太阳能领域,降低成本的同时提高光电或者光热转换效率。附图说明图1是本专利技术的Cu2S “仙人掌”微纳二级阵列结构示意图(纵切);其中,1-衬底,2-导电膜,3-Cu2S球冠,4-纳米线。图2是实施例1的Cu2S “仙人掌”微纳二级阵列的扫描电镜图。图3是实施例2的Cu2S “仙人掌”微纳二级阵列的扫描电镜图。图4是实施例3的Cu2S “仙人掌”微纳二级阵列的扫描电镜图。图5是实施例4的Cu2S “仙人掌”微纳二级阵列的扫描电镜图。具体实施例方式下面结合实施例及附图对本专利技术作进一步详细的描述,但本专利技术的实施方式不限于此。实施例1一种Cu2S “仙人掌”微纳二级阵列,由以下步骤制备得到:(I)将铜片用0-6号砂纸打磨,并依次用酒精、丙酮、去离子水超声清洗5min ;然后在铜片上用相对于饱和甘汞电极为-0.35V的电位,恒压沉积2400s的铜膜,在铜片上沉积了一层具有球冠状周期性起伏结构的铜膜;(2)将步骤(I)的产物与氧气/硫化氢混合气体(两者的体积比为1:2)混合,20° C加热16h,生成Cu2S “仙人掌”微纳二级阵列;所制得的Cu2S “仙人掌”微纳二级阵列,其结构如图1所示:衬底I上是导电膜2,导电膜2的上方是周期性分布的微米尺寸的Cu2S球冠3,Cu2S球本文档来自技高网
...

【技术保护点】
一种Cu2S“仙人掌”微纳二级阵列,其特征在于:纳米尺寸的Cu2S纳米线生长在微米尺寸的Cu2S球冠表面,Cu2S球冠又周期性的分布在衬底的表面。

【技术特征摘要】

【专利技术属性】
技术研发人员:任山李立强李明刘珠凤洪澜
申请(专利权)人:中山大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1