一种高效动态耦合磁控弧源装置制造方法及图纸

技术编号:8727919 阅读:150 留言:0更新日期:2013-05-24 20:20
本实用新型专利技术涉及表面防护领域,具体地说是一种改善电弧离子镀沉积工艺的高效动态耦合磁控弧源装置。该装置的轴对称磁场发生装置放置于靶材后面,由放置于靶材后面的高导磁率磁轭及与磁轭同轴放置的电磁线圈组成,或者由单个或两个以上永久磁体配合磁轭组成;聚焦导引磁场发生装置由电磁线圈组成,放置于靶材前面,与靶材同轴放置,装置的中心与靶面平齐或略高于靶面;本实用新型专利技术通过两组磁场发生装置配合使用,在靶面上形成动态分布的耦合磁场,达到改善弧斑的放电形式和工作稳定性,控制弧斑的运动轨迹,提高靶材刻蚀均匀性和靶材利用率,减少靶材大颗粒的发射,提高等离子体传输效率,用以制备高质量的薄膜的目的。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及表面防护领域,具体地说是一种改善电弧离子镀沉积工艺的高效动态耦合磁控弧源装置
技术介绍
表面防护涂层技术是提高工模具及机械部件质量和使用寿命的重要途径,作为材料表面防护技术之一的PVD技术,已在现代刀具、模具以及机械零件的应用方面取得了十分理想的效果。PVD技术主要分为真空蒸镀、磁控溅射和离子镀三个类型,在实际应用中,高质量的防护涂层必须具有致密的组织结构、无穿透性针孔、高硬度、与基体结合牢固等特点。真空蒸镀和磁控溅射由于粒子能量和离化率低,导致膜层疏松多孔、力学性能差、难以获得良好的涂层与基体之间的结合力,严重限制了该类技术在防护涂层制备领域的应用。电弧离子镀涂层技术由于结构简单、离化率高、入射粒子能量高、绕射性好、可实现低温沉积等一系列优点,因此得到快速发展并获得广泛应用,尤其在工模具及机械部件表面防护上展现出其他涂层技术所不具备的优势,是目前工模具及机械零件防护涂层制备的最佳工艺。但电弧离子镀在对于涂层沉积至关重要的有些方面,也表现出了其它镀膜形式所没有的问题,在一定程度阻碍了该技术的进一步应用与发展。首先是“大颗粒”污染的问题,所谓大颗粒,是来自于电弧阴极弧斑在靶材表面滚动燃烧时不断产生的比较大的中性粒子团簇,这些中性粒子团簇与等离子体一道喷发出来,飞落到正在沉积生长的涂层表面而造成涂层表面污染。大颗粒的存在导致涂层表面的粗糙度增大而降低涂层的光泽,对装饰及抗磨应用带来不利影响,严重影响涂层的质量,导致镀层附着力降低并出现剥落、镀层严重不均匀等现象。国外特别是欧洲的工模具涂层技术之所以比国内做的好,除了工艺上的优势以外,很大一部分是因为很好的解决了电弧放电及弧斑运动的问题,将大颗粒的尺寸和数目控制在工模具涂层能够接受的范围之内。因此大颗粒问题对离子镀技术的发展影响很大,成为后期发展的主要论题,也成为阻碍离子镀技术更深入广泛应用的瓶颈问题,而国内尚没有很好的技术可以解决这个问题。同时,由于电弧离子镀主要靠靶材表面上的阴极斑点的放电来沉积所需涂层的,因此是一种点状源,其等离子体的密度会随着远离弧斑的距离增加而大幅下降,同时由于等离子体的发散特点使得等离子体在传输空间分布不均匀,从而导致了涂层的沉积速率和沉积均匀性的下降。而且弧斑在靶面长时间的局部放电容易在靶面形成刻蚀轨道,造成靶材刻蚀的不均匀,进而降低了靶材利用率和影响弧斑放电。这些关键技术问题都限制了电弧离子镀技术在工模具及机械制造领域高性能防护涂层的制备和应用。目前,比较彻底清除大颗粒的方法,是在等离子体传输过程中将大颗粒排除掉,即设计遮挡屏蔽(如中国专利技术专利:提高电弧离子镀沉积薄膜质量的装置,专利号ZL200810010062.5)、磁场过滤或者对基片施加一定的脉冲偏压,通过控制宏观颗粒的运动,将其从等离子体流中过滤掉。遮挡和磁场过滤技术的应用虽然有效地消除了大颗粒的污染,但由于等离子体在传输过程中的损失,导致沉积效率的大幅度降低和沉积窗口的大幅度减小,目前等离子体的传输效率最高也仅有25%。而且值得关注的是,在这些去除大颗粒的方法中,都必须附加额外的磁过滤设备,使成本增加了很多,这也是该技术未能在工业领域广泛应用的原因之一。由于大颗粒在传输过程中与等离子体相互作用带负电荷,因此采用脉冲偏压技术也可以一定程度上减少大颗粒,但是较高的偏压也会带来较高的涂层内应力,在实际运用中是应当避免的。磁过滤和脉冲偏压技术是在等离子体传输过程中将大颗粒排除掉的方法,是等症状出现以后用来治标而不治本的方法,因此是一种消极的方法。真空电弧放电是低压大电流放电,真空电弧的行为被阴极表面许多快速游动,高度明亮的阴极斑点所控制,阴极斑点的运动决定了整个电弧的运动,真空弧光放电实际上是一系列电弧事件,相邻弧斑的次第燃起和熄灭构成了弧斑的运动,由于其快速地连续发生,以至于给人运动电弧的印象。由于电弧离子镀阴极斑点的尺寸很小,功率密度非常高(1016W/m2),如果阴极斑点在一个位置停留时间过长,必然造成液态溶池面积扩大,引发强烈的大颗粒喷射。因此解决大颗粒问题更为积极的办法是考虑从源头解决问题的措施,改善弧斑的放电形式、提高弧斑的运动速率、降低放电功率在阴极斑点处的集中、使放电功率分布在整个靶面上,从而减少大颗粒的发射。同时,为了更好的提高镀层的质量和有效的利用靶材,提高放电稳定性,必须对弧斑的运动以及等离子体的传输进行合理的控制。由于真空电弧等离子体的物理特性,外加电磁场是改善弧斑放电、控制弧斑运动以及改善等离子体的传输特性的有效方法。离子镀弧源是电弧等离子体放电的源头,是离子镀技术的核心部件,国内外在离子镀弧源的设计上都离不开磁场的设计。目前国际上应用最多最常见的方式有轴向磁场控制的圆形小弧源(如CN89200444.4、US3, 793,179、US3, 625,878等)、淹没整个靶材的纵向约束磁场控制的俄罗斯弧源以及拱形磁场控制的圆形或矩形平面受控弧源(如CNl 157335A),这也是目前国内外比较流行几种电弧离子镀膜技术。这些在靶面附近施加的具有一定位形的磁场虽然可以有效地控制弧斑在靶面的运动,但是根据上述不同磁场分量对弧斑的运动影响规律,弧斑在轴向磁场和拱形磁场下的运动会被限制在靶面上一定范围内,长时间的刻蚀会在靶面形成明显的刻蚀轨道,不利于靶材刻蚀均匀,造成了靶材浪费。而俄罗斯弧源中的磁场结构虽然可以使弧斑在整个靶面刻蚀,有效的利用靶材,但是整个弧源结构复杂,操作麻烦,靶材特殊的形状使得靶材加工困难,成本高,而且靶材尺寸小,综合利用率低。国际上应用比较广泛的拱形磁场控制的矩形平面受控弧源,利用永磁体或者电磁线圈镶嵌在磁轭的空心位置,在矩形的靶材表面上产生一个静态的拱形磁场。该磁场可分解为水平磁场B//和垂直磁场B丄,根据弧斑在横向磁场下“倒着走”的运动规律,B//可以驱使弧斑在靶面上作圆周运动,同时拱形磁场与靶面形成指向拱形顶点的两个夹角,在“锐角法则”的作用下,弧斑被限制在一定的位置处,长时间的刻蚀,容易在靶面形成刻蚀轨道,大大限制了靶材利用率和影响弧斑放电稳定性。所有的磁场设计都是考虑在靶面上形成一定的磁场位形,利用锐角法则限制弧斑的运动,利用横向分量提高弧斑的运动速度。一方面尽可能扩大横向分量的面积与强度,一方面限制弧斑的运动,要达到比较满意的效果是很困难的。而且所有的磁场设计都是静态的或者准静态的,模式固定,在提高弧斑运动速度和放电稳定性的同时容易带来靶材利用率低的问题,很难突破相互之间影响的限制。如果能够动态地变换磁场在祀面的局域性分布,从而可以改变祀面磁场横向分量最大值的分布,动态的扩大磁场横向分量的面积以达到扩大弧斑的刻蚀区域,提高靶材的利用率。1^111&1丨1^&111在专利冊8503954和”4,673,477中提出了一种动态的磁场设计思路,可以实现弧斑在结构简单的大面积靶材上的均匀刻蚀,这种方法是靠永磁体在靶背后的机械转动来改变磁场在靶面的分布,从而影响弧斑在靶面的刻蚀位置的。但是这种方法需要增加一套复杂的机械控制机构,而且涉及到密封、冷却等诸多问题,难以推广应用。
技术实现思路
本技术的目的在于提供一种高效动态耦合磁控弧源装置,它是一种创新的、突破限制的、并且行之有效且易于推广本文档来自技高网
...

【技术保护点】
高效动态耦合磁控弧源装置,其特征在于,所述高效动态耦合磁控弧源装置设有动态耦合磁场发生装置、靶材、靶材底座,靶材安装于靶材底座上;动态耦合磁场发生装置由轴对称磁场发生装置和聚焦导引磁场发生装置构成,轴对称磁场发生装置放置于靶材后面,由放置于靶材后面的高导磁率磁轭及与磁轭同轴放置的电磁线圈组成,或者由单个或两个以上永久磁体配合磁轭组成;聚焦导引磁场发生装置由电磁线圈组成,放置于靶材前面,与靶材同轴放置,装置的中心与靶面平齐或略高于靶面;动态耦合磁场由动态轴对称发散磁场叠加静态聚焦导引磁场形成或者由静态轴对称发散磁场叠加动态聚焦导引磁场形成或者由磁场强度一定的静态轴对称拱形磁场耦合动态的聚焦轴向引导磁场形成或者由强度周期性变化的轴对称拱形磁场耦合磁场强度一定的聚焦轴向引导磁场形成。

【技术特征摘要】
1.高效动态耦合磁控弧源装置,其特征在于,所述高效动态耦合磁控弧源装置设有动态耦合磁场发生装置、靶材、靶材底座,靶材安装于靶材底座上;动态耦合磁场发生装置由轴对称磁场发生装置和聚焦导引磁场发生装置构成,轴对称磁场发生装置放置于靶材后面,由放置于靶材后面的高导磁率磁轭及与磁轭同轴放置的电磁线圈组成,或者由单个或两个以上永久磁体配合磁轭组成;聚焦导引磁场发生装置由电磁线圈组成,放置于靶材前面,与靶材同轴放置,装置的中心与靶面平齐或略高于靶面;动态耦合磁场由动态轴对称发散磁场叠加静态聚焦导引磁场形成或者由静态轴对称发散磁场叠加动态聚焦导引磁场形成或者由磁场强度一定的静态轴对称拱形磁场耦合动态的聚焦轴向弓I导磁场形成或者由强度周期性变化的轴对称拱形磁场耦合磁场强度一定的聚焦轴向引导磁场形成。2.按照权利要求1所述的高效动态耦合磁控弧源装置,其特征在于,磁轭为单个或两个以上高导磁率块体材料组合而成,磁轭形状为锥台形、圆柱形或阶梯形状;磁轭放置于靶材后面的靶座内部,与靶材同轴放置;电磁线圈围套在靶材底座周围或者放置于靶座内部,与磁轭同轴放置;磁轭略高于线圈或与线圈平齐。3.按照权利要求2所述的高效动态耦合磁控弧源装置,其特征在于,轴对称磁场位形为发散磁场,动态I禹合磁场由动态轴对称发散磁场叠加静态聚焦导引磁场形成或者由静态轴对称发散磁场叠加动态聚焦导引磁场形成;或者,轴对称磁场位形为拱形磁场,动态耦合磁场由磁场强度一定的静态轴对称拱形磁场耦合动态的聚焦轴向弓I导磁场形成或者由强度周期性变化的轴对称拱形磁场耦合磁场强度一定的聚焦轴向弓I导磁场形成。4.按照权利要求1所述的高效动态耦合磁控弧源装置,其特征在于,聚焦导引磁场发生装置套在弧源与炉体之间的法兰上,聚焦导引磁场发生装置的位置可调。5.按照权利要求1、2或4所述的高效动态耦合磁控弧源装置,其特征在于,轴对称磁场发生装置中的电磁线圈由漆包线绕制在线圈骨架上,线圈内外通过绝缘保护,磁轭由高磁导率的镀镍纯铁制作;聚焦导引磁场发生装置由漆包线绕制的电磁线圈组成,线圈内外通过绝缘保护。6.按照权利要...

【专利技术属性】
技术研发人员:郎文昌王向红李明霞高斌吴百中
申请(专利权)人:温州职业技术学院
类型:新型
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1