基于CT配准结果的光学导航定位系统及其导航方法技术方案

技术编号:8490112 阅读:298 留言:0更新日期:2013-03-28 12:37
一种信息处理技术领域的基于CT配准结果的光学导航定位系统及其导航方法,该系统包括:术前CT图像导入模块、图像分割模块、体表初始配准模块、术前CT图像与术中二维超声图像模块和术中导航模块;本发明专利技术采用虚拟现实和术中超声相结合的方式,补偿由于呼吸等因素造成的术中定位误差,从而实现对冠脉搭桥术的目标点的精确定位导航。通过对术前心脏CT图像数据中的心脏和冠脉血管树进行手动分割重建,然后在光学导航仪和基于CT与超声的术中配准误差校正的帮助下搭建一个将内窥镜和虚拟内窥镜相融合的增强虚拟现实环境,从而可实现对冠脉搭桥术的目标点的精确定位导航。

【技术实现步骤摘要】
基于CT配准结果的光学导航定位导航方法
本专利技术涉及的是一种信息处理
的系统及方法,具体是一种用于辅助冠状动脉搭桥手术的基于术中超声与术前CT配准结果的导航定位系统及其导航方法。
技术介绍
近年来我国心血管病的发病率逐年上升,其中冠心病是最常见的心血管疾病。针对冠心病的治疗方法中,冠状动脉搭桥术是目前除了药物治疗和介入治疗之外的最主要、成熟治疗方式。然而传统冠状动脉搭桥手术需要胸骨正中切口,必要时还需要借助体外循环等操作才能完成手术。其包括切口大、恢复慢、并发症多等缺点。作为新型治疗方式的导航辅助微创冠脉搭桥手术,仅需要通过在胸壁上开几个手指粗细的切口、利用特殊的手术器械即可完成手术,达到了切口美观、创伤小、恢复快、并发症少等要求。进行导航辅助微创冠脉搭桥的主要手术难点之一是如何快速而精确定位目标点,不当或者错误的定位可直接影响到手术的成败和远期疗效。目前,微创冠脉搭桥手术的定位主要依赖术前影像,未能利用反映手术区域真实情况的实时信息,无法解决术中由于呼吸、体表标记点位移和体位变化等因素导致的误差问题,从而使得定位效果不理想。经过对现有技术的检索发现,“3D-imagegui本文档来自技高网...
<a href="http://www.xjishu.com/zhuanli/05/201210454220.html" title="基于CT配准结果的光学导航定位系统及其导航方法原文来自X技术">基于CT配准结果的光学导航定位系统及其导航方法</a>

【技术保护点】
一种基于CT配准结果的光学导航定位系统,其特征在于,包括:术前CT图像导入模块、图像分割模块、体表初始配准模块、术前CT图像与术中二维超声图像配准模块和术中导航模块,其中:术前CT图像导入模块接收术前影像学检查获得的DICOM格式图像文件,生成术前影像包并分别输出至图像分割模块和体表初始配准模块,术前CT图像与术中二维超声图像配准模块分别与图像分割模块和体表初始配准模块相连并接收带有手术目标点的三维动态冠脉树以及体表初始配准结果,术前CT图像与术中二维超声配准模块输出术前CT转换矩阵至术中导航模块,通过术中导航模块输出精确手术导航信息;所述的术前影像包包括:目标区域内一个或若干个心动周期的若干...

【技术特征摘要】
1.一种基于CT配准结果的光学导航定位导航方法,其特征在于,包括以下步骤:第一步、图像分割模块中的心脏分割单元通过术前CT图像导入模块获得目标区域一个心动周期的一系列DICOM格式的术前CT图像数据后,对该心动周期内的心脏术前CT图像基于临床经验逐帧手动勾勒出心脏轮廓,获得分割结果,并根据分割结果重建得到动态心脏模型;第二步、图像分割模块中的血管树分割单元对术前影像包中一个心动周期内的血管树术前CT图像基于临床经验逐帧手动勾勒出血管树轮廓并根据临床需求手动标出手术目标点,获得分割结果,并根据分割结果重建获得血管树模型,构建出一个包含动态血管树模型的三维虚拟场景,该三维虚拟场景构成了一个虚拟内窥镜图像;第三步、体表初始配准模块利用体表配准来获得术前CT图像数据在图像坐标系坐标与真实手术对象的空间坐标的转换矩阵,即两个不同空间坐标系下的坐标点,通过特征互相映射并实现一一对应关系,达到最终术前CT图像与手术对象实时二维超声图像的对应,即具体通过在术前CT图像中选取若干个配准标记点,在真实的空间找到与图像中配准标记点对应的点并利用光学导航仪得到这些点在真实空间的坐标,利用这两组不同坐标系,但是一一对应的点集的位置坐标,求得两个空间之间的转换矩阵;第四步、通过输入心电图信号将带有手术目标点的三维动态冠脉树中对应的若干个相位与当前心脏跳动相位相匹配,即以转换矩阵T作为初始转化矩阵,设Ti为在转换矩阵T的基础上针对每一个相位的术前CT图像进行校正后得到的转换矩阵,即针对一个相位的术前CT图像i,Ti×T能进一步的校正该相位CT图像与手术对象实时二维超声图像之间的配准误差,具体步骤包括:4.1)通过超声探头对心脏采集一系列手术对象的手术对象实时图像,其中每一幅采集到的手术对象实时图像都对应某一个相应的术前CT图像、每一个相位的术前CT图像都对应了一系列的二维超声图像,对于相位i的术前CT图像数据来说,提取出心脏内壁的表面轮廓,即通过一个标定好的超声探头来获取术中的二维超声图像,通过T将二维超声图像坐标系转换到术前CT图像数据坐标系,从而与术前CT图像进行融合;设Ti,i=1,2,…N,其中N为一个心动周期的术前CT图像数据中术前图像的相位个数,为在转换矩阵T的基础上针对术前影像包中的每一个相位的术前CT图像进行校正后的转换矩阵,即针对一个相位的、与一组转换矩阵中的Ti相对应的术前CT图像i,Ti×T能够进一步的校正该相位CT图像与手术对象实时二维超声图像之间的配准误差;所述的标定好的超声探头是指:为了能将实时的二维超声图像融合进导航系统,需要求得从二维超声图像坐标系到导航仪坐标系的转换矩阵;设TMtd←ui是从二维超声图像坐标系到固定在超声探头上的追踪设备的坐标系的转换矩阵,TMui←td是从超声探头上的追踪设备坐标系到世界坐标系的转换矩阵,二维超声图像中的一个点的坐标可以通过下面的公式转换到世界坐标系下的坐标;其中,(uk,uv)是这个点在二维超声图像坐标系中的坐标,(sx,sy)是x轴和y轴的比例系数,(xw,yw,zw)是其在世界坐标系中的坐标;超声探头标定就是要求得从二维超声图像坐标系到固定在超声探头上的追踪设备的坐标系的转换矩阵TMtd←ui;4.2)对相位i所对应的每一幅二维超声图像提取出心脏内壁的轮廓,从这一系列的二维超声图像中提取的内壁组成了一组点集,从该点集中提取出特征点点集,从术前CT图像中提取的心脏内壁表面轮廓是另一组点集;4.3)通过迭代最近点算法将二维超声图像上的点集配准到术前CT图像上的点集,得到这两个点集之间的转换矩阵Ti,用于后续的精配准处理的起始矩阵,该迭代最近点算法将二维超声图像上的点集配准到术前CT图像上的点集,得到这两个点集之间的转换矩阵Ti,用于后续的精配准处理的起始矩阵,具体步骤包括:假设两个待配准的点集P和Q,pi和qi分别是两个点集中的点,i=1…n,配准问题的关键就是求解最优解使得最小时的R和T;在完成了ICP初配准后,每一个相位的术前CT图像i都各自得到了一个转换矩阵Ti×T;之后在导航阶段,将会实时的连续进行精配准,每一次精配准的初始转换矩阵就是Ti×T;对于某一个相位的术前CT图像,目标在于寻找一个使相似性测度最大的最优的转换矩阵,记为T′i,使其能最终满足对由于呼吸等因素造成的误差,从而满足对目标血管的定位要求,在此过程中采用的相似性测度为归一化的互信息;归一化互信息为:其中:M为二维超声图像所在区域在术前CT上采样所得的图像灰度点集,R为实时的二维超声图像灰度点集,H(M)为M的香农熵,iM代表M图像像素点的灰度值,代表M图像中像素点灰度值为iM的概率;H(R)为R的香农熵,iR代表R图像像素点的灰度值,代表R图像中像素点灰度值为iR的概率;H(M,R)为M和R的联合熵,代表M图像中像素点灰度值为iM、R图像中像素点灰度值为iR的概率;对于待配准的M图像和R图像,设IM(XM)、IR(XR)分别为M、R的灰度函数...

【专利技术属性】
技术研发人员:蔡俊锋罗哲王肃赵强顾立栩
申请(专利权)人:上海交通大学医学院附属瑞金医院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1