三层磁传感器中的经调校的带角度单轴各向异性制造技术

技术编号:8488253 阅读:180 留言:0更新日期:2013-03-28 06:51
各种实施方式可以被构建为具有被放置在空气轴承表面(ABS)上的三层层叠。该三层层叠可以配置有沿着与ABS正交的轴的条带高度且配置有第一磁自由层和第二磁自由层,第一磁自由层和第二磁自由层均具有相对于ABS的带角度单轴各向异性。

【技术实现步骤摘要】
三层磁传感器中的经调校的带角度单轴各向异性
技术实现思路
三层层叠可以被放置在空气轴承表面(ABS)上。该三层层叠可以配置有沿着与ABS正交的轴的条带高度且配置有第一磁自由层和第二磁自由层,第一磁自由层和第二磁自由层均具有相对于ABS的带角度单轴各向异性。附图说明图1是示例数据存储设备的立体图。图2示出能够在各实施方式中使用的示例磁传感器的横截面视图和俯视图。图3绘出根据本专利技术的各实施方式构建和操作的磁传感器的示例操作。图4A-图4C 一般地阐释根据各种实施方式能够用于磁传感器中的各种磁自由层的示例磁滞回线。图5A-图5C提供根据各种实施方式能够用于磁传感器中的示例磁层叠。图6A和图6B描绘能够用于各种实施方式中的示例磁自由层的各种实施方式的操作特性。图7A-图7D显示根据本专利技术的各种实施方式的示例磁传感器配置。图8提供根据本专利技术的各种实施方式执行的磁传感器制造例程的流程图。具体实施例方式在此一般地公开通过经调校的各向异性具有增强的性能的磁传感器。随着本行业向形状因数减小的数据存储设备发展,对更大的数据容量和更快的数据传输率的需求增力口,这可以与更小的诸如磁屏蔽和数据感知层等的磁传感器组件对应。减小的磁组件尺寸可能由于增加磁不稳定性同时降低感知的数据比特的精度而使数据存储设备的性能降级。因而,可以维持精确的屏蔽特性和增强的数据传输率的形状因数减小的磁传感器的构造是本行业中不断增加的需求。因此,磁传感器可以被构建为具有磁响应三层层叠,其具有条带高度,且被放置在空气轴承表面(ABS)上。该三层层叠可以具有两个或更多个磁自由层,每一磁自由层具有相对于ABS的带角度单轴各向异性。这样的带角度单轴各向异性可以允许具有增加的信号幅度的更高的传感器精度,并降低对工艺和设计敏感度的感受性。可以进一步调校带角度的各向异性层,以得到增强的数据读性能,且具有最小的传感器厚度增加,这是由于将各向异性角度优化为适应各种环境和操作特性。通过定向三层层叠的各层的各向异性,可以增强磁传感器的磁稳定性,在形状因数减小的数据存储设备中尤其如此。通过提高磁收率来改善回读性能,带角度的各向异性可以进一步增加三层读取元件的操作特性,提高磁收率可以对应于更大的所感知的磁场和信号幅度。转到附图,图1提供本专利技术的各种实施方式可以在其中实践的非限制性环境中的示例数据存储设备100的实施方式。设备100包括从底板104和顶盖106形成的充分密封的机壳102。内部放置的主轴马达108被配置为使许多磁存储介质110旋转。介质110由相应的数据传感器(读/写头)的阵列访问,每一数据传感器均由头万向架组件(HGA)112支承。每一 HGA 112可以由包括柔性悬挂116的头层叠组件114 (“执行器”)支承,柔性悬挂116又由刚性执行器臂118支承。通过将电流施加到音圈马达(VCM) 122,执行器114可以绕匣式轴承组件120枢转。以此方式,VCM 122的受控操作引起传感器(数字指示为124)与在介质表面定义的磁道(未示出)对准,以向其存储数据或从其检索数据。图2 —般地阐释能够用于图1中的数据存储设备的磁传感器130的各种实施方式的框图表示的剖视图和俯视图。如图2A中所示出的,可以将传感器130构建为被放置在空气轴承表面(ABS)上且被置于ABS和后偏置磁体134之间的磁层叠132。尽管在结构配置和操作配置两方面不受限制,但层叠132可具有一对由非磁间隔138隔开的磁自由层136,非磁间隔138可以表征为三层读取元件,这是由于三个操作层且层叠132本身中不包括的任何钉扎磁性层。使用三层读取元件配置可以提供减小的屏蔽到屏蔽间距140,在高线性密度数据存储设备中尤其如此,这是由于后偏置磁体134向自由层136提供设定的磁化,以便允许感知数据比特而无需增加层叠的大小。放置后偏置磁体134还允许调校大小和位置,以便优化层叠132的性能。例如,可以在离开层叠132的偏置距离142处形成偏置磁体134,且具有偏置厚度144,该偏置厚度144提供可以填充有绝缘材料的离开磁传感器130中包括的任何磁屏蔽的去耦合距离146。磁传感器130中包含的磁屏蔽(未示出)可以借助于诸如帽层和籽晶层等的一个或多个去耦合层148与磁层叠132分离,可以用隔离层叠132和任何屏蔽之间的磁化传输的任何数量的层和材料来调校去耦合层148。可以通过调整层叠132和偏置磁体134的尺寸和磁化来进一步调校传感器130以得到优化性能,如图2B的俯视图中所显示的。尽管围绕间隔层138聚焦的偏置磁体厚度144可以提供对层叠132的增强的磁影响,但可以将平行于ABS沿着Z轴测量的相应层叠和偏置磁体宽度150和152调校为相似或不相似,以便对应于相应的层叠和偏置磁体条带高度154和156。可以仔细调校层叠132和偏置磁体134的宽度和条带高度,以提供预先确定的强度和角度定向的Mpm磁化,其将层叠132的相应磁自由层136影响为预先确定设定的磁化Mfu和MFIj2。因而,层叠132和偏置磁体134的各种尺度、厚度和磁定向可以允许精确调校以便适应任何数量的预先确定操作条件和环境条件,同时维持减小的形状因数。然而,工艺和设计可变性可以增加危及精确数据感知的磁敏感度。图3提供相对于磁层叠的条带高度的示例磁传感器的示例操作特性。实线160绘出数据信号幅度,其随着条带高度增加而增加,直到峰值点,然后快速减小。由对应于磁层叠不对称性的虚线162显示类似的但独特的行为,其增加到中间体条带高度且随后减小。应明白,借助于仅仅调整诸如图2B的高度154等的层叠条带高度,可以将传感器层叠尤其是三层读取元件层叠的尺寸调校为多种多样的操作行为。尽管在某些情形中可以利用相对大的条带高度来提供经优化的数据感知,但线162阐释不对称性如何可以成为这样的磁传感器的潜在感受性。因此,各种实施方式在此用条带高度减小的层叠来调校磁传感器,条带高度减小的层叠降低工艺复杂性和对工艺参数的磁敏感度,同时增强数据回读信号幅度。在一些实施方式中,相对短的层叠条带高度配置有变化的单轴各向异性,调校变化的单轴各向异性的定向和强度,以提供增强的数据感知性能。可以以允许精确设定并维持各向异性角度的各种不受限制的方式例如倾斜沉积来构建这样的变化的单轴各向异性。图4A-图4C分别描绘具有用变化角度的倾斜沉积形成的不同的磁化各向异性的磁自由层的示例磁滞回线。图4A显示对应于至少部分地由以60°的倾斜沉积(这可以得到大约IOOOe的各向异性强度)形成的磁 自由层的回线170。作为比较,图4B的以70°角度沉积的回线172具有大约3000e的各向异性强度以及在自由层磁饱和度之间的增加的过渡区域。借助于75°的沉积角度,如图4C中的回线174所示出的,各向异性强度和过渡区域特性在磁饱和度之间增加到大约IOOOOe和20000e过渡。当各向异性强度大致在600-10000e之间(这可以通过以接近75°的角度沉积至少一个自由层来获得)时,相对短的磁层叠条带高度(例如少于两倍的层叠宽度(图2B的150)高度)的构造,可以呈现出优化的性能。尽管不作限制,但可以由受控入射溅射(CIS)形成这样的沉积角度,受控入射溅射中,磁通量经过快门窗口来到旋转样本上,同时快门和样本两者在平行平本文档来自技高网...

【技术保护点】
一种装置,包括被放置在空气轴承表面(ABS)上且配置有第一磁自由层和第二磁自由层的三层层叠,所述第一磁自由层和第二磁自由层均具有相对于所述ABS的带角度单轴各向异性。

【技术特征摘要】
...

【专利技术属性】
技术研发人员:D·V·季米特洛夫M·W·科温顿丁元俊
申请(专利权)人:希捷科技有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1