多梯度/多层自生梯度复合材料的电磁分离制备方法技术

技术编号:823821 阅读:172 留言:0更新日期:2012-04-11 18:40
一种多梯度/多层自生梯度复合材料的电磁分离制备方法。采用电磁力和不同凝固速度方法控制凝固时具有多种(或一种)初生相析出合金的凝固过程,根据初生相与熔体本身的导电性差异和初生相析出的温度区间的不同,在电磁力场和温度场下使多种初生相在不同的温度区间内从熔体中分离,并在铸件内部呈多层分布,从而制备出具有不同增强相增强的(或一种增强相而分布不同的)多梯度/多层自生梯度复合材料。本发明专利技术工艺简单、灵活,可以通过改变电磁力的施加方式与大小,控制凝固速度方法,制备性能不同多梯度/多层自生梯度复合材料,来满足不同工况的实际需要。(*该技术在2022年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种,属于复合材料制备
文献《离心铸造过共晶Al-Si合金自生复合材料》(王渠东等,《复合材料学报》98年第3期)介绍了采用离心铸造方法制备自生复合材料。这种方法解决了增强相表面易被污染、增强相与基体之间结合不良等问题,但是需要复杂的带有加热控温装置的垂直离心铸造机,其使用局限于初生相与熔体本身比重差比较大的合金,当初生相与熔体比重差不大时,这种方法难以应用。文献《电磁搅拌复合材料的组织与性能》(金俊泽等,《材料研究学报》98年第4期)介绍的电磁搅拌定向凝固分离共晶方法,能得到分离偏聚层与基体之间结合强度较高的复合材料,但这种方法需要在普通定向凝固装置上加一个电磁搅拌器,设备复杂,并受到铸件形状的限制。并且以上方法只能制备单层表面复合材料,不能制备多梯度/多层自生梯度复合材料。为实现这样的目的,本专利技术的技术方案中,采用在铸造条件下,通过施加电磁力和采用不同的定向凝固速度方法,控制具有两种或两种以上的初生相析出的合金(或在熔体中加入生成初生相的添加剂)的凝固过程。合金在溶化炉中熔化后,将定向凝固结晶器或铸型置于电磁场之中进行浇铸,使铸件在电磁场下凝固。根据初生相与熔体本身的导电性差异,在电磁力的作用下,初生相与金属熔体受力方向相反,使初生相从熔体分离,并定向运动,又因为多种初生相形成的温度区间的差异,采用电磁力场和控制定向凝固速度方法来控制初生相的多层分布,或对于同一种增强相采用不同的电磁力和凝固速度控制初生相的分布的方法制备增强相相同,而分布不同的多梯度/多层自生梯度复合材料(每层增强相的数量和分布不同)。本专利技术采用电磁分离法制备多梯度/多层自生梯度复合材料的原理是由于金属熔体中的初生相与金属熔体之间导电性的差异,在电磁力场作用下金属熔体中的导电性差的初生相所受电磁斥力方向与电磁力方向相反。这样,由于多种初生相形成温度区间不同,在电磁力和定向技术的控制下,多种初生相向逆向电磁力方向在铸件截面内按多层分布。或对于同一种增强相采用电磁力和定向凝固速度控制初生相的分布的方法制备增强相具有不同分布的多梯度/多层自生梯度复合材料。本专利技术选用在凝固过程中具有导电性与合金熔体不同的、形成温度区间不同的多种初生相析出的合金,或在熔体中加入生成初生相的添加剂,把合金熔体浇铸到定向凝固结晶器或铸型内,通过施加不同的电磁力和定向凝固速度的方法控制初生相的大小和分布,达到多层分布的特征。本专利技术具体工艺过程如下1、在溶化炉中熔化所选的合金,过热100℃-200℃。2、将定向结晶器置或铸型置于电磁场之中,可以采用稳恒磁场加直流电流或采用高频磁场。3、施加的电磁力为1.0×104N/m3-2.0×106N/m3,根据初生相大小,所要制备多层/多梯度自生复合材料的厚度确定。4、在浇铸时先开通电源,然后浇铸,使铸件在电磁场下凝固。5、铸件凝固后,关闭电源。本专利技术电磁力的施加方式可以有两种,稳恒磁场加直流电流或高频磁场(由高频磁场在熔体中产生的感应电流与电磁场相互作用产生电磁力),在操作时可根据铸件的形状采用其中一种方式施加电磁力,制备出铸件内部和表面性能不同的材料,来满足实际工况的要求。本专利技术工艺简单、灵活,可以通过改变电磁力的施加方式与大小,控制凝固速度方法,制备性能不同多梯度/多层自生梯度复合材料,来满足不同工况的实际需要。附图说明及具体实施例方式图1为本专利技术采用稳恒磁场加直流电流制备自生多梯度/多层梯度复合材料的示意图。图中,定向凝固结晶器1安装在电磁铁4的两个磁极中间,间隙为10-20mm,在定向凝固结晶器两端插入电极3,通过导线与直流电源2相连。图2为本专利技术采用稳恒磁场加直流电流制备自生多梯度/多层梯度复合材料时采用的定向结晶器示意图。图中,6为直流电流方向,7为电磁场方向,8为加热铸型,9控制凝固速度的冷铸型,10为初生相的运动方向,11为定向凝固方向。磁场强度和电流大小根据公式f=|j×B|确定,式中B-磁通密度,T;j-电流密度,A/m2;f-电磁力,N/m3。电磁力场采用稳恒磁场加直流电方式施加,定向凝固温度场采用加热铸型,加热温度高于金属熔体的凝固温度,低于初生相析出温度,避免金属熔体在铸型壁上凝固,一侧采用温度可控制的冷铸型,形成定向凝固条件。采用Al-20wt%Si-1.2wt%Fe-1.8wt%Mn合金,在溶化炉溶化,780℃时加入K2TiF2和KBF4混合盐反应剂后,在熔体中形成增强相TiB2。然后浇注到加热铸型中,在电磁力场和定向温度场中凝固。首先在二种场作用下,增强相TiB2向铸件一侧运动,形成TiB2增强复合层;当冷却到740℃-680℃时形成初生富铁相(AlSiFeMn复杂金属间化合物),在二种场作用下,增强相初生富铁相向铸件一侧运动,形成初生富铁相增强复合层;当冷却到680℃-577℃时形成初生Si,在二种场作用下,增强相初生Si向铸件一侧运动,形成初生Si增强复合层,这样在铸件一侧形成三层梯度自生复合材料。图3为本专利技术采用高频磁场制备表面复合材料的示意图。图中,加热铸型12安装在螺线管线圈13、14的中间,线圈的形状与铸件的形状一致,线圈与铸型间隙为5-10mm,铸型预热温度低于合金熔点200-500℃,通过加热铸型的温度控制凝固速度,线圈与高频电源相连,15为铸件的凝固方向。在浇铸时先开通高频电源,使螺线管线圈通电,然后浇铸,使铸件在电磁场下凝固。铸件凝固后,关闭高频电源。高频电源的功率和频率根据所需电磁力的大小由Maxwell方程确定。权利要求1.一种,其特征在于选用在凝固过程中具有导电性与合金熔体不同的、形成温度区间不同的多种初生相析出的合金,或在熔体中加入生成初生相的添加剂,在溶化炉中熔化后,将定向结晶器或铸型置于电磁场之中进行浇铸,施加1.0×104N/m3-2.0×106N/m3的电磁力,使铸件在电磁场下凝固,形成具有不同增强相增强的或同一种增强相而分布不同的多梯度/多层自生梯度复合材料。2.如权利要求1所说的,其特征在于所说的电磁场是稳恒磁场加直流电流,定向凝固结晶器(1)采用加热铸型(8),安装在电磁铁(4)的两个磁极中间,间隙为10-20mm,在定向凝固结晶器(1)两端插入电极(3),电极(3)通过导线与直流电源(2)相连。3.如权利要求1所说的,其特征在于所说的电磁场是高频磁场,加热铸型(12)安装在螺线管线圈(13、14)的中间,线圈(13、14)的形状与铸件的形状一致,与铸型间隙为5-10mm,线圈(13、14)与高频电源相连。全文摘要一种。采用电磁力和不同凝固速度方法控制凝固时具有多种(或一种)初生相析出合金的凝固过程,根据初生相与熔体本身的导电性差异和初生相析出的温度区间的不同,在电磁力场和温度场下使多种初生相在不同的温度区间内从熔体中分离,并在铸件内部呈多层分布,从而制备出具有不同增强相增强的(或一种增强相而分布不同的)多梯度/多层自生梯度复合材料。本专利技术工艺简单、灵活,可以通过改变电磁力的施加方式与大小,控制凝固速度方法,制备性能不同多梯度/多层自生梯度复合材料,来满足不同工况的实际需要。文档编号B22D27/02GK1404946SQ02137749公开日2003年3月26日 申请日期2002年10月31日 优先权日20本文档来自技高网...

【技术保护点】
一种多梯度/多层自生梯度复合材料的电磁分离制备方法,其特征在于选用在凝固过程中具有导电性与合金熔体不同的、形成温度区间不同的多种初生相析出的合金,或在熔体中加入生成初生相的添加剂,在溶化炉中熔化后,将定向结晶器或铸型置于电磁场之中进行浇铸,施加1.0×10↑[4]N/m↑[3]-2.0×10↑[6]N/m↑[3]的电磁力,使铸件在电磁场下凝固,形成具有不同增强相增强的或同一种增强相而分布不同的多梯度/多层自生梯度复合材料。

【技术特征摘要】

【专利技术属性】
技术研发人员:许振明刘向阳李天晓
申请(专利权)人:上海交通大学
类型:发明
国别省市:31[中国|上海]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1