聚乙烯醇缩甲醛-纳米晶体纤维素制锂离子电池隔膜制造技术

技术编号:7913889 阅读:314 留言:0更新日期:2012-10-24 23:19
聚乙烯醇缩甲醛(PVFM)的软化温度较高,同时具有很高的机械强度,高耐磨性及良好的粘结性,卓越的电性能,是生产高韧性、耐磨性及高介电强度膜的重要原料。将PVFM溶于甲酸、醋酸等溶剂后,加入纳米晶体纤维素(NCC)与其均匀混合后,去除溶剂,得到含NCC的PVFM膜,再用硫酸水解去除NCC得到含纳米孔径PVFM膜。该膜可作锂离子电池隔膜或其他电池隔膜。

【技术实现步骤摘要】

本专利技术涉及一种隔膜及其制造方法,一种使用该隔膜的电池、电容器,还涉及一种微孔膜和一种制造微孔膜的方法。更具体的,本专利技术涉及一种具有优异安全性的高性能隔膜,一种简便、低成本的制造微孔隔膜的方法以及使用该隔膜的电池、电容器。
技术介绍
随着近来便携式电子装置的技术的发展,已经开发了高性能移动电话或笔记本电脑。为了支持这样的开发,对于优异驱动电源存在需要。电子装置经常需要长时间运行,并 且它们还需要是轻重量和小型的。因此,要求电源具有高能量密度。作为满足该要求的电源,已经广泛使用了实现高能量密度的锂离子二次电池。锂离子二次电池以其高比能量、高电压、体积小、重量轻、无记忆性等优点,近十年来获得了巨大的发展,已成为通讯类电子产品的主要能源之一,然而,锂离子二次电池也存在着安全隐患。在高温、短路、过充放、振动、挤压和撞击等情况下,将使电池温度升高,进而引发锂离子电池内部物质发生化学反应,如正极材料的热分解、电解液的热分解和负极上SEI膜的热分解等反应,上述反应的产物将和溶剂发生更为剧烈的反应,这些反应将释放出大量的热,使体系温度不断上升、电池内压升高,可能造成电池的着火、爆炸。因此,提高锂离子电池安全性是研发锂离子电池的关键。电池隔膜在锂离子电池中起到阻止正负极直接接触短路的作用。为了提高电池的安全性,不仅要求电池隔膜能在常温下阻止正负极直接接触短路,同时还要求在高温下该电池隔膜也能够阻止正负极直接接触短路。但现在常用的电池隔膜,如聚乙烯、聚丙烯很难保证高温下的完整性,炉热等安全测试中经常出现因电池隔膜收缩造成内部短路、引发热失控的问题。因此,提高电池隔膜的耐高温性能是提高锂离子二次电池高温安全性能的关键。聚乙烯醇缩甲醛(PVFM)的软化温度较高,同时具有很高的机械强度,高耐磨性能及良好的粘结性、卓越的电性能,是生产高韧性、耐磨性及高介电强度膜的重要原料。在PVFM膜上打上均匀的微细孔后,能作为锂离子电池隔膜或其他电池隔膜。一般锂离子电池隔膜表面都有微孔,以利用电池工作时离子的进出和气体的穿透,使电池正常运转。聚乙烯(PE)或聚丙烯(PP)锂离子电池隔膜,它们的孔洞往往通过机械拉伸膜方法使之开列,从而形成众多网络空洞,空洞大小随拉伸强度而定。由于PE或PP膜拉伸后有回缩现象,需热处理定形,使膜的孔洞保持稳定。一些聚烯烃膜的制作是在原材料上加入19T5%Si02粉料作填充剂,将拉伸后的膜孔隙进行填充,使孔径改善,孔隙率提高,而不改变膜的强度。以往作为聚烯烃微多孔膜的制造方法已知有,如CN1331496A将纳米碳酸钙微粉等无机粉末混合在高分子量聚烯烃中,熔融混炼成型后,提取出无机粉末,而得到微多孔膜的方法。该法需要无机物的提取工艺,得到的微孔膜由于混炼过程中无机粉末的团聚变大,难以控制成孔均匀性。另外一种制造复合隔膜的典型工艺为“干法”,如美国Celanese公司的商品名为Celgard 2300的三层PP/PE/PP复合隔膜,利用PP、PE的半结晶特性,经挤塑成形后,退火结晶化处理,在晶区和非晶区单向拉伸出微裂纹(银纹),然后将三层膜复合。该法制造的多孔膜孔隙率很难超过40% ;另外工艺条件苛刻,废品率高,生产成本偏高;由于分子量过高时很难稳定挤出,“干法”工艺采用的聚烯烃的重均分子量一般在30万以下,为提高膜的抗拉强度,只能靠高倍率拉伸取向,该复合膜的抗撕裂强度较差,生产中易导致电池内部微短路。中国专利CN03100743. O、CN200410040214. 8 和 CN200510002963. 6 公布了一种免萃取的聚合物电解质膜制备工艺,其工艺路线如下把聚合物单体溶解在有机溶剂中,在聚合物溶液中加入引发剂或交联剂,把聚合物溶液涂布在基底上制备成薄膜,溶剂挥发后得到微孔聚合物膜,然后采用液态锂离子电池的工艺制成聚合物锂离子电池。这种方法利用可挥发的溶剂作为造孔剂,制备的聚合物电解质膜孔径孔率难以控制,膜的厚度不均匀,而且聚合物电解质膜中存在引发剂和残余的溶剂,在电池充放电时会发生副反应,造成电池 电化学性能较差。因此,这种聚合物锂离子电池技术一直没有工业化使用。本专利技术将纳米晶体纤维素作为造孔剂加入PVFM的甲酸溶液中,后用浓硫酸水解NCC,浓硫酸和NCC均可用水清洗,造孔成本低,空隙均匀,膜强度大,残留少。
技术实现思路
本专利技术提供一种制取PVFM微孔膜作锂离子电池隔膜的方法。主要是将PVFM溶于甲酸或醋酸、酚类、氯仿等溶液中,待溶解均匀后,加入纳米晶体纤维素(NCC)粒体,充分混合均匀后,用减压蒸馏法蒸去除甲酸溶剂,压铸成一定尺寸大小的含NCC的PVFM膜,将膜至于60%H2S04溶液中浸泡10小时后,水解去除NCC,得到带纳米孔径的PVFM微孔膜。该膜可作锂离子电池隔膜或其他电池隔膜。PVFM由聚乙烯醇(PVA)经甲醛缩合而成,PVA能溶于水,通过甲醛和酸催化下缩合成PVFM,缩合反应以均相化反应为佳,缩醛度〈70%。也可用乙二醛、丙二醛等醛类进行缩合反应,而以甲醛缩合最好。PVA聚合度在170(T2400之间,作为制膜用的PVFM,分子量分布窄一些更好,所制得的膜强度会更高。NCC是纳米晶体纤维素,它的颗粒有球形,椭圆形或棒状,粒径在20nnT80nm之间,长度为200nnT300nm。优选用棒状NCC为佳。NCC虽不溶于水,但由于是纳米颗粒,存在大的比表面积,NCC表面羟基众多,能在水中均匀分散,也能均匀分散于甲酸之中。NCC由天然纤维素纤维经强酸水解而制得,而在弱酸如甲酸中不易水解。NCC加入PVFM的量为59^30%(重量比),制得的PVFM微孔膜孔隙率在309^70%之间,孔隙率随NCC加入量增加为增加,孔径大小视NCC粒径大小而定,但都在纳米尺寸范围内,在20nnT300nm之间调节。NCC在制PVFM膜的过程中实为过渡产物,当用浓硫酸水解NCC后,膜中大部分NCC被水解掉,亦会残存极少量NCC于膜中,但不影响膜的功能。NCC在电池工作过程中呈吸水状态,离子仍可以从NCC表面通过。用NCC制作并水解得到的PVFM微孔膜,透气性为1(T200秒/IOOcc,适合作锂离子电池隔膜。具体实施例方式实施例I :在500ml的反应瓶中,将聚合度为1700,缩醛度70%的PVFM80g倒入反应瓶中,力口A 98%甲酸溶液200ml,60°C下搅拌10小时至PVFM完全溶解,再加入粒径50nm,长度200nm的NCC粉体15g,充分搅拌均匀后,再真空蒸去大部分甲酸,得到含NCC的胶状PVFM物,在玻璃表面皿上压成薄膜,再真空蒸去残余甲酸,然后将膜浸于35°C 60%H2S04中反应10小时除去NCC,经水洗,碱中和,再水洗得PVFM微孔膜,膜厚0. 2微米。实施例2: 在500ml的反应瓶中,将聚合度为2400,缩醛度70%的PVFM80g倒入反应瓶中,力口A 98%甲酸溶液200ml,60°C下搅拌10小时至PVFM完全溶解,再加入粒径80nm,长度IOOnm的NCC粉体15g,充分搅拌均匀后,再真空蒸去大部分甲酸,得到含NCC的胶状PVFM物,在玻璃表面皿上压成薄膜,再真空蒸去残余甲酸,然后将膜浸于35°C 60%H2S04中反应10小时除去NCC,经水洗,碱中和,再水洗得PVFM微孔膜,本文档来自技高网
...

【技术保护点】
一种微孔聚乙烯醇缩甲醛膜,其特征在于含有粒径20?80nm,长度200?300nm的棒状、圆球形或椭球型孔隙。

【技术特征摘要】

【专利技术属性】
技术研发人员:蓝海时圣涛蓝洋
申请(专利权)人:中国国旅贸易有限责任公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1