【技术实现步骤摘要】
本申请涉及雷达探测,特别是一种通过毫米波雷达重定位的方法及装置。
技术介绍
1、随着自动驾驶汽车步入现实,其安全性与定位技术紧密相关。在车辆定位丢失时,需要进行重定位,即定位失败时重新找回当前的定位。
2、现有技术中大多通过同步定位与建图slam结合激光雷达(简称:激光slam)实现重定位,但激光雷达具有体积大、易受环境因素影响和价格昂贵难以量产等缺点。因此如何低成本、高效率地实现重定位任务成为了一个亟待解决的问题。
技术实现思路
1、基于上述问题,本申请提供了一种通过毫米波雷达重定位的方法及装置。目的是通过毫米波雷达高效实现重定位。
2、本申请公开了一种通过毫米波雷达重定位的方法,所述方法包括:
3、将毫米波雷达的样本点云编码成样本描述子;
4、获取所述样本描述子在编码空间中的位置间距;
5、根据所述样本描述子和所述位置间距训练重定位模型;
6、通过训练得到的重定位模型进行重定位。
7、可选的,通过训练得
...【技术保护点】
1.一种通过毫米波雷达重定位的方法,其特征在于,所述方法包括:
2.根据权利要求1所述的方法,其特征在于,通过训练得到的重定位模型进行重定位,包括:
3.根据权利要求1所述的方法,其特征在于,根据所述样本描述子和所述位置间距训练重定位模型,包括:以卷积神经网络为骨干网络,基于所述样本描述子、所述位置间距和NetVLAD算法训练重定位模型。
4.根据权利要求1所述的方法,其特征在于,根据所述样本描述子和所述位置间距训练重定位模型,包括:以TripletLoss作为损失函数,经训练拉近锚示例和正示例的位置间距,拉远锚示例和负示例的位置间
5...
【技术特征摘要】
1.一种通过毫米波雷达重定位的方法,其特征在于,所述方法包括:
2.根据权利要求1所述的方法,其特征在于,通过训练得到的重定位模型进行重定位,包括:
3.根据权利要求1所述的方法,其特征在于,根据所述样本描述子和所述位置间距训练重定位模型,包括:以卷积神经网络为骨干网络,基于所述样本描述子、所述位置间距和netvlad算法训练重定位模型。
4.根据权利要求1所述的方法,其特征在于,根据所述样本描述子和所述位置间距训练重定位模型,包括:以tripletloss作为损失函数,经训练拉近锚示例和正示例的位置间距,拉远锚示例和负示例的位置间距。
5.根据权利要求1所述的方法,其特征在于,所述方法还包括:采用在线生成训练集的方法,根据不同所述样本描述子的位置,重新获取所述样本描述子和所...
【专利技术属性】
技术研发人员:刘明轩,齐诚,邓一民,李天然,张溪桐,
申请(专利权)人:上海汽车集团股份有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。