【技术实现步骤摘要】
一种车载空调推荐方法、装置及计算机存储介质
[0001]本专利技术涉及数据推荐领域,特别是涉及一种车载空调推荐方法
、
装置及计算机存储介质
。
技术介绍
[0002]智能汽车行业正朝着电动化
、
智能化
、
网联化
、
共享化的方向发展,智能座舱作为新一代的人机交互平台,相较于传统汽车座舱极大的拉近了人与车之间的连接,并以此为基础产生了大量的用户个性化数据,为智能座舱场景下打造个性化应用服务打下了坚实的基础
。
用户对于座舱温度的感知是个性化的,传统的车机端空调有恒温模式和手动模式,都是属于用户主动使用的范畴,用户在调节各个空调设置的时候都偏向于独立调节,但是用户的操作都是具有相关性的,当前的智能座舱系统无法根据周围的环境以及用户的使用习惯主动给予个性化的空调推荐
。
随着用户在智能座舱场景下与空调推荐系统交互数据的累积,传统的独立调节各个空调设置的模式已经无法让用户专注驾驶,如何通过数据驱动的方式,为用户提供一种基于用 ...
【技术保护点】
【技术特征摘要】 【专利技术属性】
1.
一种车载空调推荐方法,其特征在于,所述车载空调推荐方法包括:获取用户操作信息以及驾驶环境信息;根据所述用户操作信息以及所述驾驶环境信息,获取空调操作建议,所述空调操作建议至少包括空调开启建议
、
座椅加热开启建议和座椅通风开启建议;向用户推送所述空调操作建议
。2.
根据权利要求1所述的车载空调推荐方法,其特征在于,所述根据所述用户操作信息以及所述驾驶环境信息,获取空调操作建议,包括:根据所述用户操作信息以及所述驾驶环境信息,构建多任务深度神经网络模型;基于所述多任务深度神经网络模型,根据
Sigmoid
函数获取空调操作概率;根据所述空调操作概率,获取所述空调操作建议
。3.
根据权利要求2所述的车载空调推荐方法,其特征在于,所述根据所述用户操作信息以及所述驾驶环境信息,构建多任务深度神经网络模型,包括:对所述用户操作信息以及所述驾驶环境信息进行数据拼接;对拼接后的所述用户操作信息以及所述驾驶环境信息进行数据特征划分;通过数据分析获取所述拼接后的所述用户操作信息以及所述驾驶环境信息的标签
。4.
根据权利要求3所述的车载空调推荐方法,其特征在于,所述通过数据分析获取所述拼接后的所述用户操作信息以及所述驾驶环境信息的标签之后,包括:根据所述用户操作信息,对带有标签的所述拼接后的所述用户操作信息以及所述驾驶环境信息进行数据标注
。5.
根据权利要求2所述的车载空调推荐方法,其特征在于,所述根据所述用户操作信息以及所述驾驶环境信息,构建多任务深度神经网络模型,还包括:获取用户使用空调推荐功能的频次的平均值;根据所述平均值及预设数据去除比例,去除相对应的用户历史操作信息
。6.
根据权利要求2所述的车载空调推荐方法,其特征在于,所述基于所述多任务深度神经网络模型,根据
Sigmoid
函数获取空调操作概率,包括:根据以下公式计算所述空调操作概率:根据以下公式计算所述空调操作概率:根据以下公式计算所述空调操作概率:其中,
p_open
表示用户开启空调的概率,
y_open
表示多任务深度神经网络模型中用户是否开启空调的输出层结果,
p_seat
表示用户开启座椅加热的概率,
y_seat
表示多任务深度神经网络模型中用户是否开启座椅加热的输出层结果,
p_air
表示用户开启座椅通风的概率,
y_air
表示多任务深度神经网络模型中用户是否开启座椅通风的输出层结果
。7.
根据权利要求2所述的车载空调推荐方法,其特征在于,所述基于所述多任务深度神经网络模型,根据
Sigmoid
技术研发人员:张振,芦振,
申请(专利权)人:武汉路特斯汽车有限公司,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。