电机制造技术

技术编号:3364684 阅读:167 留言:0更新日期:2012-04-11 18:40
一种电机,具有用以产生在转子运动方向(3)连续的、各与整的磁周期相对应的磁场的它激转子结构(1),并具有沿转子结构连续布置的定子磁极(5),其特征在于:落在一个磁周期中的定子极数偏离一整数。(*该技术在2016年保护过期,可自由使用*)

【技术实现步骤摘要】

本专利技术涉及一种具有用以产生在转子运动方向连续的并各与整磁周期相对应的磁场的它激转子结构,并具有沿转子结构连续布置的定子磁极的电机。已经公知了一种具有一个它激转子(或定子,在此情况下转子及定子的概念在意义上可互换)的这样一种电机,其中与整的磁周期相对应的磁场由单个彼此隔开的磁极,即一个北极和一个南极(每磁周期)构成的。与由转子极对构成的磁场数相对应地,设置了在定子极布置及数目上相一致的定子极组,以使得处于每个转子极对下面的是与其相一致的定子极布置。作为转子极例如可采用永久磁铁。在这类电机中,由于漏磁通、尤其是由于转子极间的间隙,将构成这样一种转子磁场,即在转子相对转子运动时将产生作用于转子极上的力的非线性变化,该力依赖于在磁极上存在的磁场量值的和。最后由此产生了一种自槽特性(Eigenrast-verhalten),即出现了一种自持力矩(也称齿槽力矩或齿槽效应(cogging))。在低速的空载情况下该自槽特性尤为明显。该效应的出现尤其是因为在转子磁场的各个磁周期内持续相同的状况使这些非线性变化的力在定子或转子的整个长度上相加。与自槽特性相关地也产生出这种电机的另外缺点,如不安静的运行,振动,电机必须以最小转数运行等。因为在定子及转子极形状的变化方面规定有窄的极限,自持力矩的减小仅能借助于极或叠片的调整,空气隙的加大或通过专门构成的极头形状来实现。然而,通过所述这些措施会影响电机运行参数,以致通过这些措施在其自槽特性上改善了的电机表现为一种不佳的折衷。本专利技术的任务在于创造一种本文开头所述类型的电机,它能消除或至少降低自持力矩。根据本专利技术的对该任务的第一解决方案设置了一种电机,其特征是,落在一个磁周期中的定子极数偏离一整数。根据本专利技术的方案,获得了与各个整磁周期相应的磁场相对的各种定子极结构,使得作用于转子极的非线性变化的可导致自持力矩的力不会在定子或转长度上多倍地相叠加,而是相反地通过减小或消除自持力矩而相抵消。与落在一个磁周期中定子极的偏离整数的极数相应地,在各个与整磁周期相应的磁场及与此相对设置的定子极之间获得了可变的错位,以使得在不同的转子极上施加不同的校准力,它们通过定子或转子的长度或圆周可以相互抵消。通过偏离整数,可以避免定子极相对转子或定子长度内的磁场周期的空间布置上的周期性。由此不会出现在磁场和定子极之间的空间关系的任何重复,以致也不会出现任何增强齿槽力矩的累加效应。有利的是,在根据本专利技术的电机结构中可完全应用标准的材料及构件。在一个有利的本专利技术实施形式中,设置对定子极时间上错开的供电,用于补偿由于落在一个磁场周期中的定子极数偏离整数所产生的磁场和定子极之间变化的空间错位。通过该措施可以补偿对电机功率的不利影响,因为通过考虑到错位的在时间上错开的供电,使定子极与其错位无关地对产生电机转矩的总力作出贡献。根据本专利技术解决上述任务的另一种电机的特征在于连续的并与整数的磁周期相对应的磁场是通过交替具有一个北极和一个南极的永久磁铁段构成的,其中在永久磁铁段之间设有隔离间隙,这些隔离间隙相对于转子运动方向以交替相反的倾斜角度倾斜地延伸。同时通过根据本专利技术的该方案将达到均衡的效果,其中由于隔离间隙的延伸变化而产生的可构成自持力矩的力彼此至少部分地抵消。在另一个根据本专利技术的解决方案的有利构型中规定隔离间隙是一个单一的连续隔离间隙的一部分,通过该连续的隔离间隙使在运动方向上连续延伸的包括永久磁铁段的磁体彼此隔开,其中磁体的一个包括用于北极的磁铁部件,另一个包括用于南极的磁铁部件。所述连续的隔离间隔尤其可为正弦曲线型。通过该连续的隔离间隙使相反极之间的磁场变化的不连续性得到适当补偿,这就促使自持力矩的进一步减小。本专利技术的其它有利构型的可能性可由从属权利要求中得到。现在将借助于实施例及涉及这些实施例的附图来详细解释及描述本专利技术。附图为附图说明图1本专利技术的第一实施例图2用于解释图1中所示第一实施例的一个转子极对与定子极组相一致的电机的示图;图3在垂直于图1前视图的观察方向上的图1中的实施例(剖视图);图4根据本专利技术的电机的第二实施例;图5根据本专利技术的电机的第三实施例;图6沿图5剖线1-1的图5中实施例的剖视图;及图7根据本专利技术电机的第四实施例。在图1至3中用标号1表示一个电机的转子。该转子包括永久磁铁2。这些永久磁铁2相对于以双箭头3所示的转子运动方向彼此以恒定间距排成行。与转子1的北极和南极2相对置地设置了一个定子4,它具有定子极5,定子极在转子1运动方向上彼此以恒定间隔排成行。定子极5设有未在图1至3中表示出的定子绕组。为了简化起见,在图1至3中描绘了一个线性电机。但这些图也可看成是一个旋转电机的转子和定子的展开。根据图1中所示的实施例该电机共具有二十个磁铁,以构成十个、每个包含一个北极及一个南极的转子极对。相对这十个、每个由一磁场周期构成的转子极对总共设置了二十七个定子极,以使得在落在一个转子极对中的定子极数为非整数2.7。在根据图2的示图中转子包括九个转子极对。这里落在一个转子极对中的定子极数为3。如从图1及2的比较中可以明显看出,在定子极数与转子极对数的商为整数的情况下,得到沿定子或转子长度上重复出现的定子极和转子极对之间的空间关系,而在该商偏离整数的情况下,在定子极和永久磁铁之间出现了由一个定子到另一定子变化的错位。因此在图1所示的实施例中,在定子长度内不能产生永久磁铁和定子极之间周期性重复出现的空间关系。在图1及3中所示实施例的电机的定子极的供电是借助三相交流电源电压来实现的,其中以字母R表示的定子极的绕组位于交流供电电压的0°相位,以字母S表示的定子极的绕组位于120°相位,及以字母T表示的定子极的绕组位于240°相位。以字母R′,S′及T′表示的定子极的绕组是一种错极连接方式,在最简单的情况下借助这样连接的简单错极,即由三个所述的相位对于这些绕组产生另外的相位,其中以T′表示的定子极的绕组位于60°相位,以R′表示的定子极的绕组位于180°相位,及以S′表示的定子极的绕组位于300°相位。由此对所有定子极的供电提供了六种不同的相位,它们相对于三相交流电源电压的相位跃变减半。在图1及3中所示电机运行时,定子极相对转子极对的错位变化用于使作用于相应转子极上的这些会导致自持力矩的力得以抵消。而相反在图2所示的电机的情况下,其中在每三个定子极后将重复出现转子和定子极之间的相同空间关系,所有的力作用在同一方向上,就产生了自持力矩。另一方面,定子极相对转子极变化的错位还导致,三相供电电压的极相位在经过一定的定子或转子长度后不再与刚经过的磁周期内的相应定子空间位置相适配,因为在磁周期内的定子极的相似位置是对穿过定子极上的绕组的磁通变化过程起主要作用的,并通过它的时间导数对绕组中的电压变化过程起主要作用。这里将这样来达到平衡,即通过以星形连接布置的定子极绕组的适当改接,使定子极的一部分以相对三相交流电源电压总是错开60°的相位供电。由此相对于交流供电电压仅有的三个初始相位提供了更细的调节,它适应于定子极相对转子极变化的错位,使得在转子长度上作用于转子磁极以产生电机转矩的力形成近似相等的分布,这就使尽管有了上述极的错位也不会对电机运行带来不利影响。在图1和3所示实施例的情况下还会产生的误差角本文档来自技高网...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:罗尔夫·斯托斯曼托马斯·斯托斯曼
申请(专利权)人:罗尔夫·斯托斯曼
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1