全息光盘存储器的激光读写镜头制造技术

技术编号:3057997 阅读:256 留言:0更新日期:2012-04-11 18:40
全息光盘存储器的激光读写镜头属于光存储技术领域。本发明专利技术中的两个傅立叶变换镜头组采用非对称型结构进行串联,按照空间光调制器与面阵光电耦合器件的像素尺寸匹配镜头组放大率,进行消像差和畸变设计。消像差参考光镜头与傅立叶变换镜头的光轴有一定夹角,两个傅立叶变换镜头和参考光镜头形成三镜头组合式全息光盘存储器的激光读写镜头。本发明专利技术能够完成物光和参考光不共轴的全息光盘存储器的数据写入和读出,并且实现全息光盘存储器的空间光调制器与面阵光电探测器的像素匹配要求,达到快速读取,降低误码率的目的。

【技术实现步骤摘要】

全息光盘存储器的激光读写镜头属于光存储

技术介绍
光全息存储器作为一种新型的高密度光存储系统,由于其存储容量大、高冗余度、快的数据传输速率和存取时间短等各项优点,正在引起研究领域人们的极大关注。目前由于固体激光器、高分辨率空间光调制器以及高分辨率高速光电探测器等的相关技术的成熟,使高密度光全息存储越来越向实用化方向发展。光全息信息存储根据不同情况和需要,有菲涅尔全息、像面全息和傅立叶变换全息等存储方法,而其中的傅立叶变换全息图具有空间位移不变性,使其在空间复用存储中占有优势。全息光盘存储器是一种采用盘式存储介质的光全息存储器,作为全息光盘存储器的激光读写的镜头由特殊设计的傅立叶变换透镜组和参考光透镜组成,将两个傅立叶透镜进行串联组成4f系统来完成信息的处理,是对输入信息进行傅立叶变换运算处理的核心工具。经过空间光调制器(SLM)调制后的物光信息经过一个傅立叶变换镜头后与来自参考镜头的参考光干涉形成全息图,存储在位于傅立叶镜头组间的某个位置上的全息存储介质中。读出时,以参考光通过参考光镜头照射在全息光盘的存储介质上,存储介质中的信息经过第二个傅立叶镜头还原成SLM的物光信息,成像到面阵光电耦合器件上,实现的数据的读出。图1是全息光盘存储器中读写镜头的工作原理图。用平行光照射置于透镜前焦面上的空间光调制器(SLM)1,又称为组页器,它将待存储的信息呈现为光学图像,透过傅立叶变换透镜FTL12,在其后焦面附近安放全息光盘4,经过参考光镜头7引入另一参考光束3,形成干涉的全息图,此干涉的全息图在一定光强度下,可以被全息光盘记录下来。用原参考光照明全息光盘中的全息图,通过傅立叶变换镜头FTL25作傅立叶逆变换,便可在其后焦面平面上再现原存储的信息,形成图像,在此位置放置面阵光电耦合器件6,如CCD器件或COMS器件等,就可以实现存储信息的读出。目前通用的傅立叶变换透镜组都是以两个光学参数一致的傅立叶变换镜头以对称结构形式串联,全息光盘位于两个镜头之间,参考光镜头仅采用一个单镜片的正透镜。其缺点一是由于两个傅立叶镜头的焦距一样,其放大率为1,这样对于像素尺寸比不为1∶1的空间光调制器和面阵光电耦合器件,不能够实现它们的每一个像素都相匹配,限制了存储信息的读出速度,增大了数据的误码率。缺点二是由于传统的傅立叶变换透镜并不是针对全息存储器所设计,不但焦距长,体积大,而且像差也没有得到足够的修正,使存储信息的误码率达不到数据存储的要求。缺点三是参考光没有专门针对全息存储所设计的消像差参考光镜头,当参考光的光轴与存储介质表面法线有微小角度误差时,会使含有未校正像差的参考光斑在存储介质中的光斑形状不规则,光能量分布不均匀,造成存储在介质中的干涉全息图像照度不均匀,使数据的误码率难以控制。另外没有专门针对三维数字全息存储器设计的短焦距,大孔径的参考光镜头,达不到三维存储器存储的高密度目的。
技术实现思路
本专利技术为了解决上述提出的全息光盘存储器空间光调制器和面阵光电耦合器件像素匹配问题,以及参考光斑质量差和实用化等问题,提出了一种基于傅立叶变换全息图的全息光盘存储器的激光读写镜头。本专利技术所设计的全息光盘存储器的激光读写镜头,具体结构参见图2~3。本专利技术包括傅立叶变换镜头(FTL1)2和傅立叶变换镜头(FTL2)5两个镜头以及参考光镜头7,傅立叶变换镜头2和傅立叶变换镜头5串联,全息光盘位于两个傅立叶变换镜头之间,存储介质可以垂直傅立叶变换镜头2的光轴或者以与之夹角30°~60°放置在傅立叶变换镜头2和傅立叶变换镜头5之间,参考光镜头7与傅立叶变换镜头光轴成一定角度放置,夹角在30°~150°,并且这三个镜头的光轴均在同一平面内,参见图2。本专利技术中的傅立叶变换镜头组采用非对称型结构。两个傅立叶变换镜头的焦距比等于空间光调制器和面阵光电耦合器件的像素尺寸大小比,两个傅立叶变换镜头有多种不同焦距的组合。傅立叶变换镜头2和5前后串联,在2和5之间加入全息光盘的存储介质后,全息光盘的的存储介质表面法线与傅立叶变换镜头2垂直的时候,镜头5与镜头2的光轴共轴。当全息光盘的的存储介质表面法线与傅立叶变换镜头2有一定夹角的时候,由于存储介质对来自镜头2的信息光有偏折作用,使信息光束的光轴产生一定的平行平移,本专利技术设计的镜头5与镜头2不共轴,二者光轴位于同一平面且平行,两个光轴偏移量和偏移方向等于由于全息光盘存储介质对信息光束的光轴折射产生的偏移量和方向,可以保证光路的实际同轴性与像差要求,2和5的光轴偏移量根据全息光盘和傅立叶变换镜头2的夹角以及存储介质厚度递增,范围为1~6mm。傅立叶变换镜头2由四组四片组成第一组是具有正光焦度的第一片单片双凸透镜12,第二组是具有负光焦度的第二片弯月透镜13,第三组是具有负光焦度三片厚双凹透镜14,第四组是具有正光焦度的第四片薄双凸透镜15。该镜头有效焦距范围在100mm~150mm之间,相对孔径在1/5~1/2.5之间。傅立叶变换镜头2后面设计有一个锥形套作为滤波器,把空间光调制器经过2变换后产生的频谱面上的其余级次的谱滤除,只保留衍射强度最大零级谱26,可以去除衍射各级光对存储图像的干扰,本专利技术根据零级谱面26的大小来确定锥型套滤波器光阑的通光孔径。空间光调制器的正方形单个像素边长为b,工作波长为λ,f为傅立叶变换镜头FTL1的后焦距9,零级谱面大小为w=2λfb2·]]>并且由傅立叶变换镜头FTL1的后焦距9和此镜头的最后一片透镜15的直径来作为锥型的滤波器的锥高和锥底直径。锥型套内表面做不反光处理,参见图2和图3。傅立叶变换镜头5由三组四片组成,第一组是FTL2的第一片具有负光焦度单片弯月透镜,第二组是FTL2的中间具有正光焦度单片双凸透镜,第三组为具有正光焦度的双胶合透镜。其有效焦距范围在40mm~80mm之间,相对孔径在1/6~1/3之间。傅立叶变换镜头2和5的组合后的波像差小于λ/4,调制传递函数MTF在401p/mms时,全视场内大于0.5,最大畸变小于0.012%,球差小于0.2mm。2和5中间前后的有效工作焦距,满足SLM和CCD以及全息存储介质的安装和工作空间,可以实现空间光调制器和面阵光电耦合器件件像素的1∶1匹配。参考光镜头7由三组三片组成,第一组为具有正光焦度的单凸透镜,第二组为具有负光焦度单片双凹透镜,第三组为具有正光焦度双凸正透镜。数值孔径0.28~0.4。最后一片透镜口径在40mm~80mm之间。参考光是将经过扩束准直的光束会聚,得到消像差得圆形光斑。使光斑能量分布均匀,提高图像质量。本专利技术中以上所述所有镜片的均为球面透镜,并且透镜加工中心偏差均小于0.005mm,中心厚度误差小于0.02,曲率误差小于两个光圈。本镜头的可用于FTL1焦距在100mm~150mm之间,FTL2焦距在40mm~75mm之间,工作波长532nm的全息光盘存储器激光读写。两个傅立叶变换镜头采用非对称结构,焦距不相同,可以按照空间光调制器与面阵光电耦合器件的像素尺寸匹配镜头组合的放大率,进行消像差和畸变设计,能够实现全息光盘存储器的像素匹配要求,达到快速读取,降低误码率的目的。与之相配合设计的参考光镜头可以满足参考光的光本文档来自技高网
...

【技术保护点】
全息光盘存储器的激光读写镜头,包括傅立叶变换镜头(2)和傅立叶变换镜头(5)以及参考光镜头(7),傅立叶变换镜头(2)和傅立叶变换镜头(5)串联并位于存储介质(4)的两侧,其特征在于:存储介质(4)垂直傅立叶变换镜头(2)的光轴或者以与之夹角30°~60°放置在傅立叶变换镜头(2)和傅立叶变换镜头(5)之间,参考光镜头(7)与傅立叶变换镜头(2)光轴夹角在35°~150°,并且这三个镜头的光轴均在同一平面内;傅立叶变换镜头组采用非对称型结构:两个傅立叶变换镜头的焦距比等于空间光调制器和面阵光电耦合器件的像素尺寸大小比;存储介质垂直放置在傅立叶变换镜头(2)和傅立叶变换镜头(5)之间时,傅立叶变换镜头(5)与傅立叶变换镜头(2)共轴;存储介质以一定夹角放置在傅立叶变换镜头(2)和傅立叶变换镜头(5)之间时,傅立叶变换镜头(5)与傅立叶变换镜头(2)不共轴,二者光轴位于同一平面且平行,两个光轴偏移量和偏移方向等于由于全息光盘存储介质(4)对信息光束的光轴折射产生的偏移量和方向,傅立叶变换镜头(2)和(5)的光轴偏移量根据存储介质和傅立叶变换镜头(2)的夹角以及存储介质厚度递增,范围为1~6mm。...

【技术特征摘要】
1.全息光盘存储器的激光读写镜头,包括傅立叶变换镜头(2)和傅立叶变换镜头(5)以及参考光镜头(7),傅立叶变换镜头(2)和傅立叶变换镜头(5)串联并位于存储介质(4)的两侧,其特征在于存储介质(4)垂直傅立叶变换镜头(2)的光轴或者以与之夹角30°~60°放置在傅立叶变换镜头(2)和傅立叶变换镜头(5)之间,参考光镜头(7)与傅立叶变换镜头(2)光轴夹角在35°~150°,并且这三个镜头的光轴均在同一平面内;傅立叶变换镜头组采用非对称型结构两个傅立叶变换镜头的焦距比等于空间光调制器和面阵光电耦合器件的像素尺寸大小比;存储介质垂直放置在傅立叶变换镜头(2)和傅立叶变换镜头(5)之间时,傅立叶变换镜头(5)与傅立叶变换镜头(2)共轴;存储介质以一定夹角放置在傅立叶变换镜头(2)和傅立叶变换镜头(5)之间时,傅立叶变换镜头(5)与傅立叶变换镜头(2)不共轴,二者光轴位于同一平面且平行,两个光轴偏移量和偏移方向等于由于全息光盘存储介质(4)对信息光束的光轴折射产生的偏移量和方向,傅立叶变换镜头(2)和(5)的光轴偏移量根据存储介质和傅立叶变换镜头(2)的夹角以及存储介质厚度递增,范围为1~6mm。2.根据权利要求1所述的全息光盘存储器的激光读写镜头,其特征在于傅立叶变换镜头(2)由四组四片组成第一组是具有正光焦度的第一片单片双凸透镜(12),第二组是具有负光焦度的第二片弯月透镜(13),第三组是具有负光焦度三片厚双凹透镜(14),第四组是具有正光焦度的第...

【专利技术属性】
技术研发人员:王也陶世荃万玉红王大勇江竹青刘长江
申请(专利权)人:北京工业大学
类型:发明
国别省市:11[中国|北京]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利