使用多压缩机的热泵型空调系统的线性膨胀阀的控制方法技术方案

技术编号:2454807 阅读:214 留言:0更新日期:2012-04-11 18:40
一种控制线性膨胀阀(LEV),从而控制在空调系统中循环的制冷剂流速的方法。LEV的口径比在从最小值到最大值的范围内受控,所述最小和最大值根据压缩机的容量以及冷却和加热模式来确定。LEV口径比也基于压缩机的运行状态、室内风扇气体体积的变化和室外风扇是否运行而受控。这样的LEV控制能使制冷剂总在合适的流速下循环,改进了冷却和加热效率,还防止了液态制冷剂流入压缩机,确保了压缩机的高可靠性。(*该技术在2023年保护过期,可自由使用*)

【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及一种用于控制线性膨胀阀的方法,从而可以合适地控制在空调系统中的循环的制冷剂的流速,尤其涉及用于控制使用多个压缩机的热泵型空调系统的膨胀阀的口径比的方法。
技术介绍
普通的空调系统包括压缩机、冷凝器、线性膨胀阀和蒸发器。压缩机将低温低压的气态制冷剂转变为高温高压的气态制冷剂。冷凝器将由压缩机转变来的高温高压的气态制冷剂转变为中温高压的液态制冷剂。线性膨胀阀将由冷凝器转变来的中温高压的液态制冷剂转变为低温低压的液态制冷剂。蒸发器将该低温低压的液态制冷剂转变为气态制冷剂。另一方面,热泵型空调系统设置有根据加热和冷却模式改变制冷剂流动通道大小的四通阀,从而使室内和室外热交换器的功能改变。即,在加热模式下,室内和室外热交换器分别用作冷凝器和蒸发器;而在冷却模式下,室内和室外热交换器分别用作蒸发器和冷凝器。近来,使用多个具有不同容量的压缩机根据加热或冷却负荷来改变压缩能力,从而优化冷却和加热效率。如图1所示,根据现有技术使用多个压缩机的热泵型空调系统包括多个压缩机11和12、室外热交换器14、室外风扇14a、线性膨胀阀15、室内热交换器16、室内风扇16a和四通阀13。压缩机11和12压缩制冷剂。室外热交换器14使压缩后的制冷剂和室外空气进行热交换,以将压缩后的制冷剂冷凝成中温高压的液态制冷剂。室外风扇14a使室外空气向室外热交换器14流通。线性膨胀阀15使所述中温高压制冷剂减压成低温低压制冷剂。室内热交换器16使流过线性膨胀阀15的制冷剂与室内空气进行热交换,从而使制冷剂蒸发并且冷却室内空气。制冷剂风扇16a使室内空气向室内热交换器流通。四通阀13根据冷却和加热模式改变制冷剂的流动通道大小。基于所需加热/冷却预设温度和实际室内温度T4之间的差异,控制器20判断冷却和加热负荷是大或小,并控制压缩机11和12的运行,于是全部或部分的压缩机被起动。另外,控制器20控制四通阀13来根据冷却/加热模式改变制冷剂的流动通道大小,并检测室内热交换器16和室外热交换器14的管路温度T1和T2,从而控制室内风扇16a和室外风扇14a的运行。而且,控制器20根据冷却和加热负荷,允许合适量的制冷剂进行循环。控制器20还检测管路温度T1、T2和入口侧管路温度T3,并控制线性膨胀阀15的口径比,从而保持合适的过热度。然而,现有技术的热泵型空调系统存在以下问题。如果室外和室内热交换器14和16的连接管由长管构成,当制冷剂经过该长管时发生压力降,入口侧管路温度T3减小。这会使当前的过热度显著地低于设计系统时设定的目标过热度。因此,控制器20判断有大量的循环制冷剂,进而减少了线性膨胀阀15的口径比以减少制冷剂的流速。因此,循环制冷剂的流速急剧减少,导致与冷却负荷相比,制冷剂流速不足。另外,当室内和室外热交换器的连接管由短管构成,或者循环制冷剂的流速不足时,入口侧温度T3变大,导致当前的过热度超过了目标过热度。这会导致控制器20控制线性膨胀阀15具有更大的口径比,从而急剧地增加循环制冷剂的流速。这会导致液态制冷剂流入压缩机11和12。另外,控制器20检测室内温度T4和室外温度T5,并且根据冷却和加热负荷控制室内和室外风扇16a和14a的运行,以及线性膨胀阀的口径比。但是,如果冷却和加热负荷增加,线性膨胀阀15的口径比急剧增加,并且因此循环制冷剂的量增加,结果产生液态制冷剂流入压缩机11和12的问题。而且,当室内风扇16a的气体体积减少时,或在加热运行过程中,为了防止在高室外温度的工况下加热超过负荷而关闭室外风扇14a时,通过室内热交换器16或室外热交换器14的制冷剂不充分蒸发,导致液态制冷剂流入压缩机11和12。
技术实现思路
因此,本专利技术鉴于上述问题提出,本专利技术的目的是提供一种用于控制空调系统中的线性膨胀阀的方法,其中,防止了循环制冷剂的流速在空调系统的任何运行环境下不足或过大,因此制冷剂总是在合适的流速下循环,从而改善了空调运行并确保了空调系统的高可靠性。本专利技术的另一目的是提供一种控制空调系统中的线性膨胀阀的方法,其中,线性膨胀阀的口径比可受控制,因此不管室内和室外换热器的连接管是由长管还是由短管制成,有合适量的制冷剂被循环。本专利技术的又一目的是提供一种控制使用多个压缩机的空调系统中的线性膨胀阀的方法,其中,线性膨胀阀的口径比受控制,因此当根据冷却和加热负荷改变制冷剂的压缩能力时,可防止液态制冷剂流入压缩机。本专利技术的另一目的是提供一种控制空调系统中的线性膨胀阀的方法,其中,线性膨胀阀的口径比根据室内和室外风扇的运行状态受到控制,从而防止液态制冷剂流入压缩机。根据本专利技术的一个方面,上述和其他目的可以通过提供一种用于控制空调系统中的线性膨胀阀的方法来实现,其中,压缩机的制冷剂压缩能力随冷却和加热负荷而变化,并且安装在室内热交换器和室外热交换器之间的线性膨胀阀的口径比对应于制冷剂的压缩能力的变化而受控,所述方法包括第一步,根据每个要改变的制冷剂压缩能力,确定线性膨胀阀口径比受控范围的最小值和最大值;第二步,当制冷剂压缩能力根据冷却和加热负荷变化时,在从最小值到最大值的范围内控制线性膨胀阀的口径比,所述最大和最小值根据每个要改变的制冷剂压缩能力来确定。根据本专利技术的另一方面,提供了控制空调中的线性膨胀阀的方法,其中,随着压缩机制冷剂压缩能力从第一设定值减小到第二设定值,线性膨胀阀的口径比从第一特定值减小预定的数值到第二特定值,并且其中,当压缩机的制冷剂压缩能力从所述第二设定值增加到所述第一设定值时,线性膨胀阀的口径比从所述第二特定值增加一个小于上述预定值的数值,在空调系统运行预定时间后,所述口径比增大到所述第一特定值,使空调系统运行。根据本专利技术的又一方面,提供了一种控制空调系统中的线性膨胀阀的方法,其中,当空调系统在冷却模式下运行时,当室内风扇的气体体积减少时,线性膨胀阀的口径比减小。根据本专利技术的另一方面,提供了一种控制空调系统中的线性膨胀阀的方法,其中,当所述系统在加热模式下运行时,如果室外风扇关闭,停止运行,那么线性膨胀阀的口径比以预定数值受控到小于第三设定值的第四设定值,所述第三设定值等于当室外风扇运行时的口径比值,然后当室外风扇打开时,所述口径比增加小于所述预定数值,并且在预定的时间之后,所述口径比增加到所述第三设定值。附图说明本专利技术的上述和其他目的、特征和其他优点,参照附图,将从下文中的详细描述中更清楚地理解,其中图1示出了根据现有技术的空调系统;图2是流程图,示出了根据本专利技术第一实施例的控制空调系统中的线性膨胀阀的方法;图3是流程图,示出了根据本专利技术第二实施例的控制空调系统中的线性膨胀阀的方法;图4是流程图,示出了根据本专利技术第三实施例的控制空调系统中的线性膨胀阀的方法;图5是流程图,示出了根据本专利技术第四实施例的控制空调系统中的线性膨胀阀的方法。具体实施例方式现在参照附图详细说明本专利技术的优选实施例。如图1所示的根据现有技术的空调系统与本专利技术所应用的空调系统之间没有区别,所以将参照图1对本专利技术进行说明。在下面的说明中,假定当两个压缩机11和12都运行时,总制冷剂压缩能力比率为100%,当只有大容量压缩机11运行时,相对于总压缩能力的比率为x%,当只有小容量压缩机12运行时,相对于总压缩能力的比率为y%,并且大容量压缩机1本文档来自技高网
...

【技术保护点】
一种控制空调系统中的线性膨胀阀的方法,其中,压缩机的制冷剂压缩能力根据冷却和加热负荷变化,并且安装在室内热交换器和室外热交换器之间的线性膨胀阀的口径比对应于制冷剂压缩能力的变化而受控,所述方法包括: 第一步,根据每个要改变的制冷剂压缩能力,确定线性膨胀阀口径比受控范围的最小值和最大值; 第二步,当制冷剂压缩能力变化时,在从所述最小值到所述最大值的范围内控制线性膨胀阀的口径比,所述最大和最小值根据要改变的制冷剂压缩能力来确定。

【技术特征摘要】
【国外来华专利技术】...

【专利技术属性】
技术研发人员:苏珉镐李元熙崔昶民黄尹提许德金哲民
申请(专利权)人:LG电子株式会社
类型:发明
国别省市:KR[韩国]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术
  • 暂无相关专利