一种阿尔兹海默病MRI图像分类方法技术

技术编号:19905445 阅读:188 留言:0更新日期:2018-12-26 03:31
本发明专利技术公开了一种阿尔兹海默病MRI图像的分类方法。发明专利技术使用度量学习的思想构造损失函数并用于训练一组卷积神经网络。一方面,对于每一个3D数据在Axial、Sagittal、coronal三个方向上得到多个2D形式切片,同时输入到一组卷积神经网络中,既在一定程度上保留了3D的数据信息,又避免了使用3D卷积神经网络难以找到合适的数据集进行预训练而过拟合严重的问题;另一方面,以度量学习的思想构造损失函数训练得到的深度学习模型提取出的特征更具有可分性。最终可以得到更好的分类结果。

【技术实现步骤摘要】
一种阿尔兹海默病MRI图像分类方法
本专利技术涉及图像分类
,具体涉及一种阿尔兹海默病MRI图像分类方法。
技术介绍
医学图像处理作为图像处理和机器学习的一个发展方向,是关系人类生活最为密切的领域之一。随着人口老龄化的发展,阿尔兹海默病作为最常见的老年痴呆症之一,给人们的生活尤其是患者及其家人的生活带来了极大的影响。阿尔兹海默病(Alzheimer’sDisease,AD)的分类作为医学图像分类领域的一个重要分支,对AD的计算机辅助诊断具有重要意义,特别是对于病情的前期诊断及病情恶化的及时控制尤为重要。本专利技术采用的影像数据为MRI(MagneticResonanceImaging)图像。MRI图像能够提供丰富的脑组织形态特征,特别是与阿尔兹海默病相关的海马体、颞叶、额叶等部位的特征,同时阿尔兹海默病患者脑部会出现大量的萎缩,在MRI图像中可以直观看出。传统的阿尔茨海默病分类方法主要分为特征提取和分类两个部分:(1)首先通过各种人工或半人工的手段从采集的原始影像数据(MRI,PET等)中提取特征例如灰质体积、皮层厚度、海马体积等;(2)将(1)中提取到的特征送入传统的分类器—本文档来自技高网...

【技术保护点】
1.一种阿尔兹海默病MRI图像的分类方法,其特征在于,包括以下步骤:S1、采集足够数量的AD、MCI和NC三类人群的MRI图像;S2、对MRI图像进行预处理,得到Axial、Sagittal和coronal三个方向上的多个2D形式的切片,并将图像数据集分为训练集和测试集;S3、构建深度学习模型,并对深度学习模型中每个子网络进行预训练;所述深度学习模型中的每个子网络都是一个卷积神经网络,子网络个数与每个样本的切片数量相等;S4、将训练集中的训练数据作为深度学习模型的输入,构建基于度量学习的损失函数,并通过反向传播及随机梯度下降法优化网络参数,得到测试模型;S5、将测试集中的测试数据输入测试模型中...

【技术特征摘要】
1.一种阿尔兹海默病MRI图像的分类方法,其特征在于,包括以下步骤:S1、采集足够数量的AD、MCI和NC三类人群的MRI图像;S2、对MRI图像进行预处理,得到Axial、Sagittal和coronal三个方向上的多个2D形式的切片,并将图像数据集分为训练集和测试集;S3、构建深度学习模型,并对深度学习模型中每个子网络进行预训练;所述深度学习模型中的每个子网络都是一个卷积神经网络,子网络个数与每个样本的切片数量相等;S4、将训练集中的训练数据作为深度学习模型的输入,构建基于度量学习的损失函数,并通过反向传播及随机梯度下降法优化网络参数,得到测试模型;S5、将测试集中的测试数据输入测试模型中,通过前向传播得到输出数据,将输出数据作为分类特征输入KNN分类器得到分类结果。2.根据权利要求1所述的阿尔兹海默病MRI图像的分类方法,其特征在于,所述步骤S3中的预训练具体为:在每个子网络的最后一层增加softmax层,通过ImageNet数据集对每个子网络单独进行预训练,预训练完成后,去除softmax层,并用各个子网络的参数预训练结果初始化此深度学习模型中的相应参数。3.根据权利要求1所述的阿尔兹海默病MRI图像的分类方法,其特征在于,所述步骤S4中的损失函数J具体为:J=J1+α·J2+regularization上式中,J1为第一损失函数,J2为第二...

【专利技术属性】
技术研发人员:程建周娇苏炎洲郭桦林莉
申请(专利权)人:电子科技大学
类型:发明
国别省市:四川,51

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1