碳化钨颗粒增强钢/铁基复合耐磨板材及其制备工艺制造技术

技术编号:1789661 阅读:238 留言:1更新日期:2012-04-11 18:40
本发明专利技术公开了一种碳化钨颗粒增强钢/铁基复合耐磨板材及其制备工艺,它由碳化钨硬质相颗粒和钢/铁基韧性相复合而成,碳化钨颗粒的体积组成比为:-2.5~+2mm:30~40%;-2~+1mm:30~40%;-1~+0.3mm:25~30%,钢/铁基体熔化后渗透到碳化钨硬质相颗粒间隙,复合层厚度为4~5mm。本发明专利技术还公开了该复合耐磨板材的制备工艺,本发明专利技术在制备时不需要粘结剂,所得复合板材不但具有陶瓷颗粒的高硬度、高弹性模量,同时还具有金属的良好韧性,能大大提高了耐磨板材的抗冲击磨损性能。

【技术实现步骤摘要】

本专利技术涉及一种复合耐磨板材的制备工艺,特别是涉及一种碳化钨颗粒增强钢/铁基复合耐磨板材的制备工艺,这种板材主要用在冶金、矿山、电力、石油、建材、煤炭等行业的运行设备的制造中。
技术介绍
在冶金、矿山、电力、石油、建材、煤炭等行业的运行设备的制造中,每年需要大量的耐磨材料,但是往往由于设备结构的特殊性,复杂性。用传统的工艺方法无法生产出所需的设备,不得不采用板材的形式拼焊。到目前为止,由板材拼焊的结构件仍为制造设备方面主要的手段,因此板材的需求量极大。而目前市场上的复合材料耐磨板材,大多采用堆焊耐磨层的形式制备,要批量的生产,必须有专用的设备,成本较高,因此如何降低成本,同时提高材料的综合性能,成为材料发展的必然。近二十年来,颗粒增强金属基复合材料受到人们的关注,不但具有金属塑性、韧性好的特点,而且同时具有陶瓷颗粒的硬度高、刚度大的优点,从而显示出单一的金属基体或陶瓷颗粒所不可比拟的优异性能,所以颗粒增强金属基复合材料一般是作为耐磨、耐蚀、耐热材料进行开发和应用的。由于其独特的性能,被誉为“21世纪的材料”。因为材料的磨损失效大多是从表面萌生裂纹和疲劳的,如能将颗粒增强金属基复合材料运用到材料的表面,获得表面耐磨性优、芯部塑韧性好的零部件,延长机械零部件的使用寿命,无论对提高生产效率还是节约资源都是非常有益的。目前金属基复合材料的研究多集中在镁、铝等轻金属基上,随着制备工艺的改进和工业应用以及节约资源的要求。钢/铁基复合材料的研究已经广泛展开,由于碳化钨颗粒的熔点高、硬度高、弹性模量高、高温强度好易及较好的热稳定性特点,并且钢\铁基对WC的较好的润湿性,因此碳化钨颗粒增强钢\铁基复合材料,成为近年来新材料研究开发的热点。关于碳化钨颗粒增强金属基复合板材的工艺较多,但对于板材的复合均存在一定的缺陷。铸渗法必须考虑如何将硬质相预留与需增强的部位,以及使用树脂粘结剂,造成工艺复杂,铸件缺陷较多;真空烧结法对真空的要求较高,较大的工件无法实现;离心铸造法只适合制备回转体的工件;而物理化学气相沉积、电沉积法对于很宏观厚度的耐磨层不适合。
技术实现思路
本专利技术要解决的技术问题是,克服现有技术的不足,提供一种碳化钨颗粒增强钢/铁基复合材料耐磨板材制备工艺,在制备时不需要粘结剂,所得复合板材不但具有陶瓷颗粒的高硬度、高弹性模量,同时还具有金属的良好韧性,能大大提高了耐磨板材的抗冲击磨损性能。为解决上述技术问题,本专利技术解决问题的技术方案是这样的它由碳化钨硬质相颗粒和钢/铁基韧性相复合而成,碳化钨颗粒的体积组成比为-2.5~+2mm30~40%;-2~+1mm30~40%;-1~+0.3mm25~30%,钢/铁基体熔化后渗透到碳化钨硬质相颗粒间隙,冷却至室温,得到复合层厚度为4~5mm的耐磨板材。本专利技术要解决的另一个技术问题是,提供一种碳化钨颗粒增强钢/铁基复合材料耐磨板材的制备工艺,使用该工艺制备碳化钨颗粒增强钢/铁基复合材料耐磨板材时不需要粘结剂,采用中频感应快速加热熔化基体,复合效率高。为解决上述技术问题,本专利技术解决问题的技术方案是这样的该制备工艺包括下述步骤(1)、根据所需板材的尺寸制作砂型模,砂型模要压实;(2)、将碳化钨颗粒按体积组成比-2.5~+2mm30~40%;-2~+1mm30~40%;-1~+0.3mm25~30%,混合并球磨6小时,得到均匀的WC粉末混合物;将WC粉末混合物均匀的铺覆于砂型槽的底部;(3)、根据砂型模的尺寸,截取相应长度和宽度的钢/铁基韧性金属板材,并对韧性金属板材进行钢球喷丸处理,除去表面的油污和氧化层,然后平放于WC粉末混合物的上面;(4)、将放置好的砂型置于带有保护气氛的感应加热箱内,将整个砂型与感应器处于相对水平运动状态,感应加热使钢/铁基板材熔化,渗入到碳化钨颗粒之间,冷却后得到复合耐磨板。本专利技术为无外压渗透,步骤(2)WC粉末混合物铺覆砂型槽的底部的厚度为2~3mm。步骤(4)所述复合耐磨板耐磨层的厚度为4~5mm。为了避免氧化,步骤(4)所述保护气氛为氮气。步骤(4)所述感应电源频率为6500~7000Hz,功率165~180Kw/h。步骤(4)所述砂型与感应器相对水平运动状态的运行速度90~100mm/min。步骤(4)所述砂型与感应器的间隙距离3~4mm。步骤(3)所述截取相应长度和宽度的钢/铁基韧性金属板材,其厚度比所需复合耐磨板材厚度小1~2mm。本专利技术的有益效果是1、本专利技术充分发挥了碳化钨颗粒的高硬度,高弹性模量,以及与钢/铁基金属材料的良好韧性和塑性特点,能大大提高耐磨板材的综合性能。2、本专利技术复合板材采用廉价的韧性和塑性良好的普通基材,其成本较低。3、由于钢/铁基熔体是缓慢渗透到碳化钨硬质相颗粒间隙,钢/铁基熔体对碳化钨颗粒不会造成冲击,不存在偏析现象,故不使用有机粘结剂。4、本专利技术采用中频感应加热,能局部快速加热熔化基体,复合效率高。5、由于复合耐磨层小于5mm,熔体依靠重力的作用,能够渗透到碳化钨粉末的间隙,故不需要外加压力。6、本专利技术由于烧结速度快,氧化程度较低,故不需要大型的真空装置,在氮气的保护下即可进行,主要设备是一台感应加热设备和一台工业制氮机,故设备投资较少。7、本专利技术只要更换感应器的大小及改变感应器与板材的相对运行速度,即可实现不同大小和厚度的板材制造。附图说明图1为本专利技术砂型模主视图;图2为本专利技术铺覆有WC粉末的砂型模示意图;图3为感应烧结时的砂型模示意图;图4为本专利技术制备完成的复合板材示意图。具体实施例方式实施例1 下面结合附图对本专利技术作进一步详细说明以制备尺寸为50×15×1000mm的碳化钨颗粒增强高锰钢基复合材料耐磨板材为例。本实施例的制备工艺步骤如下A制造砂型模,砂型模(1)的外型尺寸为70×30×1100mm,为确保后续步骤的进行,中间槽的尺寸应略大于所需复合板材的尺寸为52×17×1004mm。如图1所示,刷铸钢涂料,烘干备用。B将WC粉末按体积比为-2.5~+2mm30%;-2~+1mm40%;-1~+0.3mm30%的组成进行混合球磨6小时,将混合后的粉末均匀的铺覆于砂型槽的底部,用游标卡尺控制WC粉末层(2)的厚度在2~3mm之间,如图2所示。C截取50×14×1000mm厚的高锰钢板(3),喷丸处理后,放置在碳化钨粉末层的上面;然后将整个砂型模推入带有导轨(4)的保护箱(5)内,通入氮气(6)且氮气处于流动状态,如图3所示。D放置感应器(7)在高锰钢板之上,为充分利用感应加热的集肤效应和防止感应器被钢水的热辐射造成损坏,感应器与高锰钢有3~4mm的间隙。开启感应电源,频率6500~7000Hz,功率165~180Kw/h,感应加热使高锰钢板快速熔化,温度高于高锰钢熔点50℃,其流动性较好,依靠重力能够较好的渗入到碳化钨颗粒之间,当感应器正下方的高锰钢熔化后,将砂型模与感应器产生相对水平运动,运行速度90~100mm/min,约10分钟后,停止加热,冷却至室温,打开砂型,清理打磨即为复合耐磨板。如图4所示。实施例2以制备尺寸为70×20×1000mm的碳化钨颗粒增强45#钢基复合材料耐磨板材为例。本实施例的制备工艺步骤如下A制造砂型模,砂型模(1)的外型尺寸为100×40×1100mm,为确保后续步骤本文档来自技高网
...

【技术保护点】
一种碳化钨颗粒增强钢/铁基复合材料耐磨板材,其特征是:它由碳化钨硬质相颗粒和钢/铁基韧性相复合而成,碳化钨颗粒的体积组成比为:-2.5~+2mm:30~40%;-2~+1mm:30~40%;-1~+0.3mm:25~30%,采用中频感应加热使钢/铁基体熔化后渗透到碳化钨硬质相颗粒间隙。

【技术特征摘要】

【专利技术属性】
技术研发人员:许云华牛立斌王双成彭建洪
申请(专利权)人:西安建筑科技大学
类型:发明
国别省市:87[中国|西安]

网友询问留言 已有1条评论
  • 来自[河南省郑州市联通] 2014年07月10日 22:46
    对这个技术感兴趣,不知要多少?寄望接到您电话
    0
1
相关领域技术
  • 暂无相关专利