基板/取向性磷灰石型复合氧化物膜复合体及其制造方法技术

技术编号:17309592 阅读:45 留言:0更新日期:2018-02-19 08:50
为了提出一种适合作为电池、传感器、分离膜等的固体电解质且能够廉价地制造的新的基板/取向性磷灰石型复合氧化物膜复合体,提出一种基板/取向性磷灰石型复合氧化物膜复合体,其特征在于,其是在基板上具备有取向性磷灰石型复合氧化物膜的基板/取向性磷灰石型复合氧化物膜复合体,前述取向性磷灰石型复合氧化物膜的膜厚为10.0μm以下且取向度(Lotgering法)为0.6以上,前述基板的至少形成取向性磷灰石型复合氧化物膜的一侧的材料为金属或合金或陶瓷或者它们的复合材料。

Substrate / orientated apatite composite oxide membrane complex and its manufacturing method

In order to provide a suitable as batteries, sensors, separation membranes, solid electrolyte and new substrate / cheap manufacturing oriented apatite type composite oxide membrane complex, a substrate / orientation of apatite type composite oxide membrane complex, which is characterized in that the substrate / orientation with apatite type composite oxide film orientation of apatite type composite oxide film on the substrate complex, the orientation of apatite type composite oxide film thickness is 10 m and the degree of orientation (Lotgering) for more than 0.6, at least one side forming orientation of apatite type composite oxide film on the substrate material of the metal or alloy or ceramic or their composite materials.

【技术实现步骤摘要】
【国外来华专利技术】基板/取向性磷灰石型复合氧化物膜复合体及其制造方法
本专利技术涉及作为基板与取向性磷灰石型复合氧化物膜的复合体的基板/取向性磷灰石型复合氧化物膜复合体及其制造方法。尤其涉及可以用作固体氧化物形燃料电池(SOFC)、离子电池、空气电池等电池、以及传感器、分离膜等的固体电解质的基板/取向性磷灰石型复合氧化物膜复合体及其制造方法。
技术介绍
氧化物离子导体是作为可以用作固体氧化物形燃料电池(SOFC)、离子电池、空气电池等电池的固体电解质、传感器、分离膜等各种电化学器件的功能性陶瓷而受到关注的材料。例如就固体氧化物形燃料电池(SOFC)而言,使用氧化物离子导体作为固体电解质,将该固体电解质用阳极侧电极和阴极侧电极夹住,并将其用1组分隔件夹持,从而构成单元电池。伴随着在阴极侧电极生成的氧化物离子经由作为固体电解质的氧化物离子导体移动到阳极侧电极,产生电流。作为氧化物离子导体,以往以来,除了广泛地使用具有萤石型结构的ZrO2、特别是添加有Y2O3的稳定化ZrO2以外,还广泛已知LaGaO3等钙钛矿型氧化物等。以往已知的这种氧化物离子导体大多是导入氧缺陷并通过该氧缺陷使氧离子移动的缺陷结构型的氧化物离子导体。与此相对,最近,作为晶格间氧移动的氧化物离子导体,报道了La10Si6O27等磷灰石型氧化物离子导体。关于磷灰石型氧化物离子导体,例如专利文献1(日本特开2004-244282号公报)中公开了一种氧化物离子导体,其具有三价元素A、四价元素B以及氧O作为构成元素,组成式由AXB6O1.5X+12(其中,8≤X≤10)表示,并且由晶体结构为磷灰石型的复合氧化物形成,并且氧离子的传导率具有各向异性。这样的磷灰石型氧化物离子导体中,硅酸镧系的氧化物离子导体作为在中温区域发挥出高离子传导性的固体电解质而被熟知,例如组成式La9.33+xSi6O26+1.5x等受到关注。据说,硅酸镧系的氧化物离子导体具有对称性低、即各向异性高的磷灰石结构,离子传导的活化能低,因此在制成SOFC的固体电解质的情况下,低温操作特别有利。关于这种硅酸镧系的氧化物离子导体,例如专利文献2(日本特开平8-208333号公报)中公开了一种氧化物离子导体,其特征在于,其以LnXSi6O(3X/2)+12(其中,Ln为La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy的三价稀土元素,x为6<x<12)为主要成分,在1300℃以上焙烧而成的该烧结体的主构成相的晶系由六方晶构成。专利文献3(日本特开平11-71169号公报)中公开了一种氧化物离子导电性陶瓷,其特征在于,其是将在1700℃以上的温度下焙烧而成的(RE2O3)x(SiO2)6(RE为选自La、Ce、Pr、Nd、Sm的元素,x满足3.5<x<6的条件。)作为主要成分的烧结体,其主构成相为磷灰石晶体结构。另外,硅酸镧系的氧化物离子导体由于其离子传导性具有各向异性,因此通过使其取向,可以期待进一步提高离子传导性。作为可以使硅酸镧系的氧化物离子导体在一个方向取向的制造方法,提出了如下方法等:利用浮区法(FZ法)等制作LSO单晶的方法;将La2O3粉末和SiO2粉末混合后,在700~1200℃下进行热处理而生成复合氧化物的多孔体,将该多孔体粉碎而制成粉体后,将该粉体与分散介质混合而制成浆料,使该浆料在磁场的存在下固化而形成成形体后,将其在1400~1800℃下6结,由此得到晶体的取向方向大体一致的离子传导性取向陶瓷的方法等。在专利文献4(日本特开2011-37662号公报)中,为了提供一种虽然成本低且工艺简单,但能够简单地得到大型物质、而且能提高离子传导性的离子传导性取向陶瓷的制造方法,公开了一种离子传导性取向陶瓷的制造方法,其特征在于,首先,在将包含镧系元素的氧化物粉末与Si或Ge中的至少一者的氧化物粉末的氧化物原料混合后(氧化物原料混合工序S1),将所混合的前述氧化物原料加热熔融而形成液体状态,对其进行浇铸后,骤冷而得到玻璃状物G(熔融玻璃化工序S2),接着,将前述玻璃状物G在800~1400℃下进行热处理,使其结晶化(结晶化工序S3)。专利文献5(日本特开2013-184862号公报)中公开了如下方法:对将以La2Si2O7为主要成分的第1层、以La2[Si1-xGex]O5(其中,x表示0.01~0.333的范围的数。)为主要成分的第2层、以及以La2Si2O7为主要成分的第3层按照第1层/第2层/第3层的顺序接合而成的接合体,在发生元素扩散的温度下进行加热,将加热后生成的层叠结构中位于最中间层以外的层去除,得到磷灰石型硅锗酸镧多晶体。关于使用了氧化物离子导体作为固体电解质的电解质/电极接合体及制造方法,例如专利文献6(日本特许第5666404号公报)中公开了如下的电解质/电极接合体,其在阳极侧电极与阴极侧电极之间插入安装有由其c轴方向在厚度方向取向的磷灰石型复合氧化物的单晶、或各晶粒的c轴方向在厚度方向取向的磷灰石型复合氧化物的多晶体形成的固体电解质,并且作为电解质/电极接合体的制造方法而公开的制造方法的特征在于,首先,制作由单晶或取向的磷灰石型复合氧化物的多晶体形成的固体电解质后,通过溅射、蒸镀或脉冲激光沉积在该固体电解质的一端面侧形成阴极侧电极,另外通过溅射、蒸镀或脉冲激光沉积在该固体电解质的另一端面侧形成阳极侧电极。另外,在专利文献7(日本特开2013-64194号公报)中,关于由组成式AxB6O1.5X+12(其中,6≤X≤30)所示的复合氧化物形成的膜的制造方法,公开了如下复合氧化物膜的制造方法,其具备:第1工序,向基板上供给包含前述A元素或前述B元素中的任一者的第1原料后,供给氧化剂,由此形成由前述A元素或前述B元素中的任一者的氧化物形成的第1膜,接着供给包含前述B元素或前述A元素中的剩余的一者的第2原料后,供给氧化剂,由此形成由前述B元素或前述A元素中的任一者的氧化物的第2膜;第2工序,重复前述第1工序,由此得到分别将多层前述第1膜及前述第2膜层叠而成的层叠体;以及第3工序,对前述基板及前述层叠体实施热处理,从而形成复合氧化物膜。进而专利文献8(WO2009/069685号公报)中公开了一种所谓自支撑膜型电解质/电极接合体,其中,首先制作电解质,接着在该电解质的各端面分别形成阳极侧电极及阴极侧电极。现有技术文献专利文献专利文献1:日本特开2004-244282号公报专利文献2:日本特开平8-208333号公报专利文献3:日本特开平11-71169号公报专利文献4:日本特开2011-37662号公报专利文献5:日本特开2013-184862号公报专利文献6:日本特许第5666404号公报专利文献7:日本特开2013-64194号公报专利文献8:WO2009/069685号公报
技术实现思路
专利技术要解决的问题以往已知的如上所述的基板/氧化物离子导体膜复合体的制造方法实际上可以使用的基板被限定于硅(Si)基板、需要利用基板的晶面、使基板为单晶等需要使用特殊的基板。这是因为,通过使用这种特殊的基板,能够利用基板的影响而使氧化物离子导体取向;通过使用单晶,能够使阴极侧电极和阳极侧电极间的厚度方向与氧化物离子传导的方向一致(例如本文档来自技高网
...
基板/取向性磷灰石型复合氧化物膜复合体及其制造方法

【技术保护点】
一种基板/取向性磷灰石型复合氧化物膜复合体,其特征在于,其是在基板上具备有取向性磷灰石型复合氧化物膜的基板/取向性磷灰石型复合氧化物膜复合体,所述取向性磷灰石型复合氧化物膜的膜厚为10.0μm以下且通过Lotgering法得到的取向度为0.6以上,所述基板的至少形成取向性磷灰石型复合氧化物膜的一侧的材料为金属或合金或陶瓷或者它们的复合材料。

【技术特征摘要】
【国外来华专利技术】2015.07.30 JP 2015-1504341.一种基板/取向性磷灰石型复合氧化物膜复合体,其特征在于,其是在基板上具备有取向性磷灰石型复合氧化物膜的基板/取向性磷灰石型复合氧化物膜复合体,所述取向性磷灰石型复合氧化物膜的膜厚为10.0μm以下且通过Lotgering法得到的取向度为0.6以上,所述基板的至少形成取向性磷灰石型复合氧化物膜的一侧的材料为金属或合金或陶瓷或者它们的复合材料。2.根据权利要求1所述的基板/取向性磷灰石型复合氧化物膜复合体,其特征在于,所述取向性磷灰石型复合氧化物膜由通式A9.33+x[T6-yMy]O26.00+z表示的复合氧化物形成,式中的A为选自由La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Be、Mg、Ca、Sr及Ba组成的组中的一种或两种以上的元素,式中的T为Si或Ge或包含其两者的元素,式中的M为选自由Mg、Al、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Ga、Y、Zr、Ta、Nb、B、Ge、Zn、Sn、W及Mo组成的组中的一种或两种以上的元素,式中的x为-1.33~1.5,式中的y为0~3,式中的z为-5.0~5.2,A的摩尔数相对于T的摩尔数的比即A/T为1.3~3.61。3.根据权利要求1或2所述的基板/取向性磷灰石型复合氧化物膜复合体,其特征在于,所述取向性磷灰石型复合氧化物膜的膜厚为0.5μm~7.0μm。4.根据权利要求1~3中任一项所述的基板/取向性磷灰石型复合氧化物膜复合体,其特征在于,所述取向性磷灰石型复合氧化物膜的膜残余应力为-3500MPa~0MPa。5.一种基板/取向性磷灰石型复合氧化物膜复合体的制造方法,其特征在于,使用由与所要成膜的非晶质复合氧化物膜具有相同构成元素的复合氧化物形成的、相对密度为80%以上的靶材,通过溅射法在基板上形成非晶质复合氧化物膜后,在氧分压为1.0×10-4atm以下的气氛下加热至800℃以上而进行热处理,由此使所述非晶质复合氧化物膜结晶化为磷灰石结构并取向。6.根据权利要求3所述的基板/取向性磷灰石型...

【专利技术属性】
技术研发人员:井手慎吾井筒靖久
申请(专利权)人:三井金属矿业株式会社
类型:发明
国别省市:日本,JP

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1