用于薄外延工艺静电放电保护的可控硅整流器及制备方法技术

技术编号:15692962 阅读:615 留言:0更新日期:2017-06-24 07:24
本发明专利技术提供了一种用于薄外延工艺ESD保护的SCR器件及其制备方法,属于超大规模集成电路静电放电保护技术领域。该SCR器件包含一个P+硅衬底和一个P‑外延层,P‑外延层中形成相邻接的N阱区域、P阱区域和深N阱层,两个阱区域中分别有N+、P+重掺杂区和STI浅槽隔离区;深N阱层位于N阱区域和P阱区域的下方,与N阱、P阱区域相接触,有效阻止了P型硅衬底中重掺杂离子向P阱中扩散,解决P阱体电阻减小的问题;同时由于深N阱与P阱的反向击穿电压远小于N阱与P阱的反向击穿电压,因此可以有效降低SCR器件的触发电压,实现薄外延工艺中电路抗ESD性能的提升。

Silicon controlled rectifier for electrostatic discharge protection of thin epitaxial process and preparation method thereof

The invention provides an SCR device used for the ESD protection of a thin epitaxial process and a preparation method thereof, belonging to the technical field of electrostatic discharge protection of an ultra large scale integrated circuit. The SCR device includes a silicon substrate P+ and a P epitaxial layer, P epitaxial layer formed adjacent to the N well region, P region and N wells deep well layer, two well area were N+, P+ and STI in the heavily doped region of shallow trench isolation region; beneath the deep N trap located in the N well region and the P well region, contact with the N trap and P trap area, effectively prevent the P type silicon substrate in heavily doped ion diffusion to the P trap and P trap solution reduced body resistance; at the same time as the reverse breakdown voltage reverse breakdown voltage of the deep N trap and P trap is far less than N P wells and wells, thus effectively reduce the SCR device can trigger voltage, circuit realization of thin epitaxial process the anti ESD performance improvement.

【技术实现步骤摘要】
用于薄外延工艺静电放电保护的可控硅整流器及制备方法
本专利技术属于超大规模集成电路静电放电(英文:Electro-Staticdischarge,简称:ESD)保护
,涉及一种可应用于薄外延工艺中ESD保护的可控硅整流器(英文:SiliconControlledRectifier,简称:SCR)及其制备方法。
技术介绍
随着半导体工艺的不断发展,推动了超大规模集成电路(英文:VeryLargeScaleIntegratedcircuit,简称:VLSI)的性能也在过去的几十年里提高了5个量级。目前的集成电路芯片己具备集成数以亿计的晶体管能力,但同时工艺尺寸的缩小也面临着很多障碍,最主要的就是可靠性问题、工艺波动问题以及功耗问题。而在可靠性问题方面静电放电/静电过应力(英文:ElectrostaticDischarge/ElectricalOverStress,简称:ESD/EOS)则是导致集成电路(英文:IntegratedCircuit,简称:IC)失效的主要原因。统计表明有近30%~50%的芯片失效是ESD/EOS导致的。随着电路集成规模的增加,电路抗单粒子闩锁(英文:SingleEventLatchup,简称:SEL)问题变得更为严峻。在高掺杂浓度P+的P型硅单晶上外延一定厚度的P-低掺杂浓度的外延层,可以降低寄生NPN晶体管的横向电阻,从而抑制互补金属氧化物半导体(英文:complementarymetaloxidesemiconductor,简称:CMOS)集成电路中的寄生晶闸管效应,提高抗单粒子闩锁性能。采用薄外延材料,可以有效提高电路的抗单粒子闩锁性能,但同时会造成衬底电阻的降低,使得栅极接地NMOS管(英文:gate-groundedNMOS,简称:GGNMOS)各个叉指触发不均匀,导致常规的ESD保护结构GGNMOS器件的ESD保护能力下降,因此薄外延材料上制备的芯片无法满足ESD指标要求。可控硅整流器被认为是面积效率最高的ESD防护器件,具有极高的鲁棒性。典型的基础横向SCR是由一个寄生的PNP晶体管和一个寄生的NPN晶体管构成,N型阱中的N+注入和P+注入构成阳极,P型衬底中的N+注入和P+注入构成阴极;阳极的P+、Nwell和Pwell分别形成PNP晶体管的发射极、基极和集电极;Nwell、Pwell和阴极的N+分别形成NPN晶体管的集电极、基极和发射极。当ESD事件来临时,N阱与P阱反偏,SCR处于高阻状态,N阱和P阱反偏PN结承受大部分电压,N阱与P阱间流通的电流极小约为此PN结的反向饱和电流,SCR处于关闭状态。若ESD持续放电,N阱与P阱间的电压继续增大,当反向电压大于PN结的雪崩击穿电压时,产生大量电子空穴对,电流增大使得P阱与N+的压降大于0.7V,NPN晶体管导通,电流通过N阱使得PNP晶体管发射结正向偏压大于0.7V,因此PNP晶体管也开始导通。NPN晶体管与PNP晶体管存在的正反馈机制保持着两个晶体管的导通状态,此时不需要那么大阳极-阴极电压来保持SCR的开启状态,所以电压开始下降,进入负阻区。由此可知,SCR的开启电压与N阱、P阱的反向击穿电压有关,因此SCR的开启电压一般较大,甚至高于器件的栅氧击穿电压,因此会导致SCR在保护电路已被ESD打坏的情况下仍未开启。
技术实现思路
为了降低SCR的触发电压,本专利技术在典型的基础横向SCR器件制备过程中引入深N阱(英文:DeepNWell)结构。本专利技术的目的在于实现一种用于薄外延工艺ESD保护的SCR及其制备方法。本专利技术的SCR包括P型硅衬底、P-外延层、深N阱层、N阱区域、P阱区域、N+重掺杂区域、P+重掺杂区域、浅槽隔离(英文:shallowtrenchisolation,简称:STI)区域,其中深N阱层位于N阱区域和P阱区域的下方,且与N阱区域和P阱区域相接触。可选的,P-外延层的厚度为大于第一厚度阈值且小于第二厚度阈值,其中第一厚度阈值小于4.0μm,第二厚度阈值大于3.0μm。可选的,深N阱层的厚度大于第三厚度阈值且小于第四厚度阈值,其中第三厚度阈值小于1.5μm,第四厚度阈值大于1.0μm。可选的,深N阱层的掺杂浓度大于N阱区域的掺杂浓度。可选的,N+重掺杂区域的掺杂浓度大于N阱区域的掺杂浓度。可选的,P+重掺杂区域的掺杂浓度大于P阱区域的掺杂浓度。本专利技术的SCR有效阻止了P型硅衬底中重掺杂离子向P阱区域中扩散,解决P阱体电阻减小的问题;同时由于深N阱与P阱的反向击穿电压远小于N阱与P阱的反向击穿电压,因此可以有效降低SCR器件的触发电压,实现薄外延工艺中电路抗ESD性能的提升。本专利技术的SCR的制备方法包括:(1)通过高能量离子注入机向P型外延材料片的P-外延层注入磷离子,退火形成深N阱层,其中,P型外延材料片包括位于底层的P型硅衬底和位于P型硅衬底上一层的P-外延层;(2)在P-外延层上进行一次氧化,形成薄氧化缓冲层,在薄氧化缓冲层4上淀积氮化硅,形成硬掩模层;(3)在形成的硬掩模层的表面涂覆光刻胶,进行有源区光刻,刻蚀氮化硅、氧化硅和P-外延层的硅衬底,完成STI,形成有源区;(4)去除剩余的光刻胶,通过高密度等离子体(英文:HighDensityPlasm,简称:HDP)淀积填充STI形成的槽,利用化学机械抛光(英文:ChemicalMechanicalPolishing,简称:CMP)平坦化去除氮化硅形成的硬掩模层和薄氧化缓冲层,形成STI区域;(5)再继续在步骤(4)得到的结构的表面涂覆光刻胶,进行P阱区光刻,对光刻后形成的P阱区注入硼离子,形成P阱区域;(6)去除步骤(5)得到的结构上的剩余的光刻胶,在去除剩余的光刻胶的结构表面重新涂覆光刻胶,进行N阱区光刻,对光刻后形成的N阱区注入磷离子,形成N阱区域;(7)去除步骤(6)得到的结构上的剩余的光刻胶,在去除剩余的光刻胶的结构表面重新涂覆光刻胶,进行P+重掺杂区光刻,对光刻后形成的P+重掺杂区注入硼离子,形成P+重掺杂区域;(8)去除步骤(7)得到的结构上的剩余光刻胶,在去除剩余光刻胶的表面重新涂覆光刻胶,进行N+区光刻,对光刻后形成的N+重掺杂区注入磷离子,形成N+重掺杂区域;(9)去除步骤(8)得到的结构上的剩余光刻胶,在去除剩余光刻胶的表面重新涂覆光刻胶,进行P+重掺杂区光刻以及N+重掺杂区光刻,淀积金属,利用化学机械抛光平坦化,去除表面金属,去除剩余光刻胶,完成金属电极区的制备。本专利技术可以达到的有益效果至少包括:本专利技术的用于薄外延工艺ESD保护的SCR器件制备方法可以与薄外延工艺兼容,在基于P-/P+外延衬底材料上制备SCR器件,用于电路的ESD保护结构,通过引入深N阱层次降低SCR器件的触发电压,提升薄外延工艺电路抗ESD性能。应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本专利技术。附图说明此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本专利技术的实施例,并与说明书一起用于解释本专利技术的原理。图1为本专利技术提出的用于薄外延工艺ESD保护的SCR器件的示意图;图2至图10为本专利技术的用于薄外延工艺ESD保护的SCR器件的制备方法的流程图。具体实施方式这里将详细地对示例性实施例进行说明,其示例表示在附图本文档来自技高网
...
用于薄外延工艺静电放电保护的可控硅整流器及制备方法

【技术保护点】
一种用于薄外延工艺静电放电ESD保护的可控硅整流器SCR,所述SCR包括P型硅衬底、P‑外延层、深N阱层、N阱区域、P阱区域、N+重掺杂区域、P+重掺杂区域、浅槽隔离STI区域,其特征在于,所述深N阱层位于所述N阱区域和所述P阱区域的下方,且与所述N阱区域和P阱区域相接。

【技术特征摘要】
1.一种用于薄外延工艺静电放电ESD保护的可控硅整流器SCR,所述SCR包括P型硅衬底、P-外延层、深N阱层、N阱区域、P阱区域、N+重掺杂区域、P+重掺杂区域、浅槽隔离STI区域,其特征在于,所述深N阱层位于所述N阱区域和所述P阱区域的下方,且与所述N阱区域和P阱区域相接。2.如权利要求1所述的用于薄外延工艺ESD保护的SCR,其特征在于,所述P-外延层的厚度为大于第一厚度阈值且小于第二厚度阈值,所述第一厚度阈值小于4.0μm,所述第二厚度阈值大于3.0μm。3.如权利要求1所述的用于薄外延工艺ESD保护的SCR,其特征在于,所述深N阱层的厚度大于第三厚度阈值且小于第四厚度阈值,所述第三厚度阈值小于1.5μm,所述第四厚度阈值大于1.0μm。4.如权利要求1所述的用于薄外延工艺ESD保护的SCR,其特征在于,所述深N阱层的掺杂浓度大于所述N阱区域的掺杂浓度。5.如权利要求1所述的用于薄外延工艺ESD保护的SCR,其特征在于,所述N+重掺杂区域的掺杂浓度大于所述N阱区域的掺杂浓度。6.如权利要求1所述的用于薄外延工艺ESD保护的SCR,其特征在于,所述P+重掺杂区域的掺杂浓度大于所述P阱区域的掺杂浓度。7.一种如权利要求1所述的用于薄外延工艺ESD保护的SCR的制备方法,其特征在于,所述制备方法...

【专利技术属性】
技术研发人员:谢儒彬吴建伟陈海波洪根深
申请(专利权)人:中国电子科技集团公司第五十八研究所
类型:发明
国别省市:江苏,32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1