一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法技术

技术编号:15505201 阅读:158 留言:0更新日期:2017-06-04 00:51
本发明专利技术公开了一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料,该复合材料的组成及各组分的体积分数为:聚醚醚酮树脂 55~94.4%、增强纤维 5~30%、高熔点纳米颗粒 0.5~10%、低熔点纳米颗粒 0.1~5%;高熔点纳米颗粒为纳米SiO

Multi oxide filled peek base self-lubricating nano composite material and preparation method thereof

The invention discloses a multi oxide filled polyetheretherketone based self lubrication nano composite material, composition and volume fraction of the composite material were divided into: 55~94.4%, peek resin reinforced fiber 5~30%, high melting point and low melting point nanoparticles 0.5~10% nanoparticles 0.1~5% nanoparticles with high melting point; nano SiO

【技术实现步骤摘要】
一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法
本专利技术涉及一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法,属于自润滑复合材料领域。
技术介绍
聚醚醚酮基复合材料是一种具有高强度、高模量、耐热性以及较高化学稳定性和自润滑性能的热塑性工程塑料,广泛应用于干摩擦条件下运行的滑动轴承。然而,由于纯的聚醚醚酮树脂材料通常表现出较高的摩擦系数和磨损率,在实际应用中,需要对其进行增强和自润滑改性来改善其摩擦学性能。将增强填料、固体润滑剂以及无机纳米陶瓷颗粒加入到聚醚醚酮树脂中,不仅可以提高复合材料的力学性能,同时也可以改善其耐磨减摩性能。研究表明,在金属对偶表面形成的具有润滑特性的转移膜是使聚合物复合材料具有良好的摩擦学性能的主要因素之一。在聚合物基材料中添加纳米尺度陶瓷颗粒被证明能够提高材料的摩擦学性能。然而,文献报导的自润滑复合材料中仅包含单一种类的纳米陶瓷颗粒,至今尚没有关于不同物理、化学性质的纳米氧化物颗粒的耦合对聚合物复合材料摩擦学性能影响的研究报导。耦合不同功能的纳米氧化物颗粒,发挥不同种类纳米颗粒间的协同作用,是设计制备高性能纳米自润滑材料的新思路。
技术实现思路
本专利技术的目的在于提供一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法。本专利技术所述材料在摩擦过程中,两种具有不同熔点的纳米颗粒被释放到摩擦界面上,通过界面闪温作用在材料表面烧结形成自润滑性能优异的摩擦膜。高熔点纳米颗粒提高转移膜的承载能力,而低熔点纳米颗粒促进摩擦烧结的发生,从而显著缩短材料的“跑合阶段”,通过不同熔点纳米颗粒的协同降低材料的摩擦与磨损。本专利技术将两种不同熔点的纳米氧化物颗粒同时加入到聚醚醚酮基复合材料中,通过研究其摩擦学性能发现:与两种纳米颗粒中的单一组分添加的聚合物基复合材料相比,两种纳米颗粒耦合对材料的摩擦学性能的提高具有协同效应。即:在更短的时间经过“跑合阶段”达到平衡,从而使聚醚醚酮基纳米复合材料具有较小的摩擦系数和磨损率。一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料,其特征在于该复合材料的组成及各组分的体积分数为:聚醚醚酮树脂55~94.4%、增强纤维5~30%、高熔点纳米颗粒0.5~10%、低熔点纳米颗粒0.1~5%;所述高熔点纳米颗粒为纳米SiO2或纳米TiO2;所述低熔点纳米颗粒为纳米Bi2O3或纳米CuO。所述聚醚醚酮树脂为粉料或粒料。所述增强纤维为短碳纤维或短玻璃纤维,单丝直径为5~30μm,长度为20~500μm。所述高熔点纳米颗粒和低熔点纳米颗粒的粒度均为10~100nm。如上所述多元氧化物填充聚醚醚酮基自润滑纳米复合材料的制备方法,其特征在于具体步骤为:A)将高熔点纳米颗粒和低熔点纳米颗粒进行机械混合,然后加入聚醚醚酮树脂和增强纤维进一步混合;B)将A)中混合均匀的物料置于双螺杆挤出机中熔融混炼并挤出,将熔融混炼的挤出料经注塑机注塑成型。所述增强纤维经超声清洗处理后干燥使用,清洗增强纤维的溶剂为无水乙醇或丙酮。所述双螺杆挤出机的一区加热温度为370~375℃,二区加热温度为380~385℃,三区加热温度为390~395℃,四区加热温度为400~405℃,螺杆转速为100~900rpm。所述注塑机的注射模具温度为170~200℃,注射筒温度375~385℃,注射背压2~4MPa,注射压力170~180MPa。附图说明图1为本专利技术所述自润滑纳米复合材料的摩擦系数随时间的变化图(图中PEEK:聚醚醚酮、SCF:短碳纤维)。具体实施方式下面通过具体实施例进一步说明本专利技术,但本实施例并不用于限制本专利技术,凡是采用本专利技术的相似方法及其相似变化,均应列入本专利技术的保护范围。所述试剂和原料,如无特殊说明,均从商业途径获得。实施例1一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米CuO颗粒:0.3%,纳米SiO2颗粒:1%,聚醚醚酮粉料:88.7%,短碳纤维:10%。首先,将纳米CuO和纳米SiO2颗粒进行机械混合,然后加入聚醚醚酮粉料和短碳纤维进一步混合。将上述机械混合均匀的粉料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短碳纤维经超声清洗处理后干燥使用,清洗的溶剂为无水乙醇。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为400rpm;注射机的注射模具温度为180℃,注射筒温度380℃,注射背压3MPa,注射压力175MPa。实施例2一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米CuO颗粒:3%,纳米TiO2颗粒:7%,聚醚醚酮粒料:75%,短玻璃纤维:15%。首先,将纳米CuO和纳米TiO2颗粒进行机械混合,然后加入聚醚醚酮粒料和短玻璃纤维进一步混合。将上述机械混合均匀的物料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短玻璃纤维经超声清洗处理后干燥使用,清洗的溶剂为丙酮。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为200rpm;注射机的注射模具温度为190℃,注射筒温度385℃,注射背压4MPa,注射压力180MPa。实施例3一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米Bi2O3颗粒:4%,纳米SiO2颗粒:9%,聚醚醚酮粉料:67%,短碳纤维:20%。首先,将纳米Bi2O3和纳米SiO2颗粒进行机械混合,然后加入聚醚醚酮粉料和短碳纤维进一步混合。将上述机械混合均匀的粉料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短碳纤维经超声清洗处理后干燥使用,清洗的溶剂为丙酮。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为300rpm;注射机的注射模具温度为200℃,注射筒温度375℃,注射背压4MPa,注射压力170MPa。实施例4一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料的组分体积百分比为:纳米Bi2O3颗粒:1%,纳米TiO2颗粒:5%,聚醚醚酮粉料:84%,短玻璃纤维:10%。首先,将纳米Bi2O3和纳米TiO2颗粒进行机械混合,然后加入聚醚醚酮粉料和短玻璃纤维进一步混合。将上述机械混合均匀的粉料置于双螺杆挤出机中熔融混炼并挤出。将熔融挤出的粒料经注塑机注射成型。短玻璃纤维经超声清洗处理后干燥使用,清洗的溶剂为无水乙醇。双螺杆挤出机一区加热温度370~375℃,二区加热温度380~385℃,三区加热温度390~395℃,四区加热温度400~405℃,螺杆转速为350rpm;注射机的注射模具温度为175℃,注射筒温度380℃,注射背压3MPa,注射压力175MPa。对比例1:材料制作方法及设备参数与实施例1相同,其中纳米颗粒只使用了体积分数为1%的纳米SiO2颗粒。对比例2:材料制作方法及设备参数与实施例1相同,其中纳米颗粒只使用了体积分数为1%的纳米CuO颗粒。其中实施例1及对比例1和对比例2的体积组分详见下表:将实施例1、对比例1和对比例2中试样本文档来自技高网...
一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料及其制备方法

【技术保护点】
一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料,其特征在于该复合材料的组成及各组分的体积分数为:聚醚醚酮树脂 55~94.4%、增强纤维 5~30%、高熔点纳米颗粒 0.5~10%、低熔点纳米颗粒 0.1~5%;所述高熔点纳米颗粒为纳米SiO

【技术特征摘要】
1.一种多元氧化物填充聚醚醚酮基自润滑纳米复合材料,其特征在于该复合材料的组成及各组分的体积分数为:聚醚醚酮树脂55~94.4%、增强纤维5~30%、高熔点纳米颗粒0.5~10%、低熔点纳米颗粒0.1~5%;所述高熔点纳米颗粒为纳米SiO2或纳米TiO2;所述低熔点纳米颗粒为纳米Bi2O3或纳米CuO。2.如权利要求1所述的复合材料,其特征在于所述聚醚醚酮树脂为粉料或粒料。3.如权利要求1所述的复合材料,其特征在于所述增强纤维为短碳纤维或短玻璃纤维,单丝直径为5~30μm,长度为20~500μm。4.如权利要求1所述的复合材料,其特征在于所述高熔点纳米颗粒和低熔点纳米颗粒的粒度均为10~100nm。5.如权利要求1至4中任一项所述多元氧化物填充聚醚醚酮基自润滑纳米复合材料的制备方法,其特征在于...

【专利技术属性】
技术研发人员:张嘎郭丽和赵福燕王廷梅王齐华
申请(专利权)人:中国科学院兰州化学物理研究所
类型:发明
国别省市:甘肃,62

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1