一种碱金属铌酸盐微纳米线材料及其制备方法技术

技术编号:15380416 阅读:73 留言:0更新日期:2017-05-18 22:38
本发明专利技术提供一种碱金属铌酸盐微纳米线材料及其制备方法,以Na

Alkali metal niobate micro nanowire material and preparation method thereof

The invention provides an alkali metal niobate micro nanowire material and a preparation method thereof

【技术实现步骤摘要】
一种碱金属铌酸盐微纳米线材料及其制备方法
本专利技术涉及压电纳米材料领域,具体是一种碱金属铌酸盐微纳米线材料及其制备方法。
技术介绍
压电材料因具有正、逆压电效应,因而在电能-机械能互转换领域具有广泛的应用,如压电传感器、超声发生器、马达、雷达、作动器、变压器、蜂鸣器、扬声器、声表面波器件和太赫兹波通信器件等等,对人们日常生活和国防建设起到了举足轻重的作用。但是,目前应用中的绝大部分压电材料都是含铅的。在生产、使用和废弃等过程中,铅基压电材料均不可避免地会对人类赖以生存的社会环境产生危害。为了降低甚至避免这种危害,无铅压电材料的需求应运而生。纳米技术作为21世纪一个重要新兴科技领域,在理论与实践上正经历着高速发展,大量新型纳米材料与器件不断被开发出来,并在生物医学、国防以及日常生活的各个领域展现前所未有的应用前景。纳米发电机曾经也只是一个设想,希望直接给其它微型电子器件供电。例如,在生物传感器、生物医药监控和生物活体探测方面,为了保持纳米系统微小且体内可植入等特性,小型供电系统必不可少。自从王中林成功制备出排列整齐的ZnO纳米线阵列并专利技术了纳米压电发电机后,这个设想正在逐渐成为现实,而使纳米发电机运转的核心部件则是压电材料,对此,《Science》、《Advancematerials》等杂志有专门的报道。事实上,压电材料的微型化,不仅在于可以制作纳米压电发电机,还可以用在基于压电效应的太赫兹波辐射通信、纳米马达等,这正是基于压电材料的逆压电效应(也称电致伸缩效应)而应用的,压电纳米超声雷达等传感器则需同时利用上述正、逆压电效应。从压电式纳米换能器的效率方面来讲,除了在一定程度上受系统集成组装的质量影响外,最主要的影响因素应该是其核心部件—压电材料的性能,高压电性能的材料显然会被优先关注和利用。当然,由于铅基压电陶瓷含铅且含铅量高于60%(质量比)不利于人类环境保护而即将被淘汰,特别是作为植入人体的医疗器械,更不应该采用。虽然ZnO也具有弱压电效应且纳米线及其阵列的制备可以说比较成熟,研究报道很多,但由于其压电换能效率较低,此外还由于氧化锌本身在制备过程中倾向于形成n型半导体特性,其导电性几乎接近金属的导电性,因此理论上在利用压电效应时,大的介电损耗是个无法回避的难题。因此,ZnO压电材料并不是十分理想的选择。作为替代,无铅压电材料的研究及尽早开发自然十分迫切。比较目前研究比较热的几类无铅压电材料,铌酸钾钠体系由于具有很好综合性能优势,如高的压电系数、高的机电耦合系数、高的居里温度和组成元素对人类友好,而成为首选材料之一。目前,无铅压电材料研究报道最多的是块体陶瓷材料,但是在微纳
则恰恰需要相应的具有微纳米尺寸的材料,例如在微型马达、生物医药传感器、监控、生物活体探测和太赫兹波通信等方面。从上述研究报道来看,目前针对铌酸钾钠纳米线的制备方法主要有模板生长法、水热法、溶胶-凝胶法、熔盐法和静电纺丝法等。虽然每种方法各有优点,但也各自存在一些问题。模板生长法可以采用AAO、碳纳米管、分子筛和硅纳米线等模板进行辅助生长,具有纳米线排列可控、对材料结构限制少等优点,但是存在所制备的纳米线通常是多晶,不易获得单晶,且产物中因模板的存在易引入杂质的技术问题。水热法和溶胶-凝胶法等液相法具有低温、低成本优势,及产量高和均匀性好等优点,但是存在产物长径比较低、尺寸较大,工艺复杂且产物纯度不高的技术问题。此外,水热法还存在只能用于制备对水或溶剂不敏感的化合物的技术问题。此外,如果不结合使用模板生长法而单纯采用液相法,生长出来的铌酸钾钠纳米线则杂乱无章排列。迄今为止,有关碱金属铌酸盐,特别是(1-x)K0.5Na0.5NbO3-xBaBiO3体系微纳米线的固相制备技术还没有相关报道。
技术实现思路
本专利技术的目的是提供一种碱金属铌酸盐微纳米线材料及其制备方法。针对现有技术存在的技术问题,本专利技术采用传统的固相烧结法,在不需要额外提供气相、异质模板和催化剂的的条件下,实现碱金属铌酸盐微纳米线的可控生长,使合成的碱金属铌酸盐微纳米线直接从同质基体中生长,不引入外界杂质,实现产物的纯洁。为了实现上述专利技术目的,本专利技术采用的技术方案为:一种碱金属铌酸盐微纳米线材料,是以Na2CO3、K2CO3、BaCO3、Nb2O5、Bi2O3为原料,按照化学式(1-x)KyNa1-yNbO3-xBaBiO3进行配料,其中0.15≤x≤0.07,0.4≤y≤0.6,经传统陶瓷固相烧结工艺烧制而成的微纳米线材料。碱金属铌酸盐微纳米线材料的制备方法,包括以下步骤:步骤(1)所有原料Na2CO3、K2CO3、BaCO3、Nb2O5、Bi2O3在称量配料前均置于烘箱中烘干,所述烘干的温度为120℃;步骤(2)按化学式(1-x)KyNa1-yNbO3-xBaBiO3的成分质量比称量原料,装入球磨瓶中,以无水乙醇为介质球磨24h;步骤(3)将球磨后产物取出,烘干,预烧,所述预烧的温度为700-800℃,预烧的时间为6h,预烧的升温速率为1℃/min;步骤(4)然后再以无水乙醇为介质球磨24h后烘干;步骤(5)将烘干的粉料过100目筛后,在100MPa的压力下,压制成直径14mm,厚度为2mm的圆坯;步骤(6)将压制好的圆坯固相烧结,在烧结体中获得碱金属铌酸盐微纳米线材料,所述烧结的温度为1100-1140℃,烧结时的保温时间为10-36h。本专利技术碱金属铌酸盐微纳米线材料经SEM电镜检测证实为微纳米线结构。本专利技术相对于现有技术,具有以下优点:(1)采用传统的固相烧结法,在不需要额外提供气相的条件下,实现碱金属铌酸盐微纳米线的可控生长;(2)使合成的碱金属铌酸盐微纳米线直接从同质基体中生长,不需要异质模板和催化剂,不会引入外界杂质,产物纯洁;(3)生长的碱金属铌酸盐微纳米线具有织构结构,这是微纳米线材料的理想结构,这更是其它方法所不能比拟的;(4)在此方法制备的基础上,也可以利用化学拓扑法通过后续的液相、水热或气相辅助生长继续调控碱金属铌酸盐微纳米线的长径比。此外,实验研究显示,本专利技术技术关键在于化学成分、烧结工艺(特别是烧结温度)和实验环境等因素的精确控制。通过调控,可以实现几十纳米到几十微米的(1-x)K0.5Na0.5NbO3-xBaBiO3体系微纳米线材料的制取。本专利技术方法合成的碱金属铌酸盐微纳米线后,将可能赋予它新的特性或功能,从而拓展碱金属铌酸盐微纳米线的应用范畴,因此,本专利技术具有广阔的应用前景。附图说明图1为实施例1中制备的碱金属铌酸盐微纳米线SEM图;图2为实施例2中制备的碱金属铌酸盐微纳米线SEM图。具体实施方式本专利技术通过实施例,结合说明书附图对本
技术实现思路
作进一步详细说明,但不是对本专利技术的限制。实施例1:碱金属铌酸盐微纳米线材料的制备方法:步骤(1)所有原料Na2CO3、K2CO3、BaCO3、Nb2O5、Bi2O3在称量配料前均置于120℃的烘箱中烘干;步骤(2)按照化学式(1-x)KyNa1-yNbO3-xBaBiO3进行配料,其中x=0.032,y=0.5,装入球磨瓶中,以无水乙醇为介质球磨24h;步骤(3)将球磨后产物取出,烘干,在750℃,升温速率为1℃/min的条件下预烧6h;步骤(4)然后再以无水乙醇为介质球磨24h后烘干;本文档来自技高网
...
一种碱金属铌酸盐微纳米线材料及其制备方法

【技术保护点】
一种碱金属铌酸盐微纳米线材料,其特征在于:所述碱金属铌酸盐微纳米线材料是以Na

【技术特征摘要】
1.一种碱金属铌酸盐微纳米线材料,其特征在于:所述碱金属铌酸盐微纳米线材料是以Na2CO3、K2CO3、BaCO3、Nb2O5、Bi2O3为原料,按照化学式(1-x)KyNa1-yNbO3-xBaBiO3进行配料,其中0.15≤x≤0.07,0.4≤y≤0.6,经传统陶瓷固相烧结工艺烧制而成的微纳米线材料。2.根据权利要求1所述的碱金属铌酸盐微纳米线材料的制备方法,其特征在于包括以下步骤:步骤(1)所有原料Na2CO3、K2CO3、BaCO3、Nb2O5、Bi2O3在称量配料前均置于烘箱中烘干;步骤(2)按化学式(1-x)KyNa1-yNbO3-xBaBiO3的成分质量比称量原料,装入球磨瓶中,以无水乙醇为介质球...

【专利技术属性】
技术研发人员:江民红严亚飞郝崇琰李林饶光辉成钢顾正飞刘心宇
申请(专利权)人:桂林电子科技大学
类型:发明
国别省市:广西,45

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1