一种焦化汽油加氢精制工艺制造技术

技术编号:14121301 阅读:58 留言:0更新日期:2016-12-08 15:04
本发明专利技术公开了一种焦化汽油加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢脱硫脱氮催化剂,所述催化剂包括载体和活性组分;所述载体为合成骨架结构中掺入杂原子Cu2+的KIT‑1;所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物;所述固定床反应器的反应条件为:反应温度为240‑350℃,氢分压为2‑3.5MPa,氢油体积比450‑700,体积空速1‑2h‑1。该工艺可以将焦化汽油总硫含量控制在低于5ppm,并将催化剂使用寿命提高到8a以上。

【技术实现步骤摘要】

本专利技术涉及焦化汽油加氢脱硫精制工艺,具体涉及一种采用特定催化剂进行的焦化汽油加氢精制工艺
技术介绍
焦化汽油coker naphtha又称焦化石脑油,是延迟焦化过程生产得到的初馏点至180(205℃)的馏分。焦化汽油的硫含量、烯烃含量高,马达法辛烷值较低(约在60左右),安定性差(溴价40~60gBr/100g),经过稳定后的焦化汽油只能作为半成品,一般需经过加氢精制,除去其中含氮、含硫化合物及二烯烃,才可用作车用汽油调合组分或作为石油化工原料(轻油)生产乙烯、用作合成氨原料或用作催化重整原料。焦化汽油的含硫量一般在0.6%-1.0%,也就是6000至10000ppm,如此高的含硫量严重限制了焦化汽油的使用。因此必须对焦化汽油进行处理,以脱除如此之高的硫含量。现有的除硫工艺中,加氢精制因环境友好技术成熟,已经得到广泛的应用,但现有的加氢过程针对的原料中,硫含量多在几百ppm级别,对于高达6000ppm-1万ppm的含硫量,现有的加氢精制过程采用的催化剂,难以适应如此高的含硫量,一般会存在两个问题:一是催化剂的活性下降快,装置在处理其他原料的工况下催化剂的使用周期都可以达到6a(6年)甚至更长,但在处理焦化汽油之后,催化剂的使用周期只有1-2a。频繁的更换催化剂严重的影响了装置的经济效益。二是装置反应器床层压力降升高得很快,在处理焦化汽油3-6个月之后装置就由于反应器压力降达到指标的上限而被迫停工。通过对同类装置的调研发现,在焦化汽油加氢精制过程中都不同程度地存在着反应器压力降升高过快的现象。经过分析发现,现有的加氢精制采用的催化剂用于焦化汽油加氢精制时,催化剂的金属组分损失较大,说明催化剂上活性组分减少,同时孔容变小很多,导致反应物与催化剂接触面积下降,这都直接反应在催化剂活性的下降上。同时,焦化汽油在生产乙烯料、重整料和合成氨料时,均要求较高的操作苛刻度,加氢深度高,导致催化剂床层积碳加剧,压力降迅速上升。而当压力降上升到设备允许的上限0.38MPa时,就必须对催化剂床层进行处理。因此如何提供焦化汽油精制工艺,采用改进的催化剂能有效将焦化汽油中的硫含量控制在5ppm以下,并提高使用寿命,是本领域面临的一个难题。
技术实现思路
本专利技术的目的在于提出一种焦化汽油加氢脱硫精制工艺,该工艺可以将焦化汽油中的总硫含量降低到5ppm以下,并将催化剂使用寿命提高到8a以上。为达此目的,本专利技术采用以下技术方案:一种焦化汽油加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分。所述载体为合成骨架结构中掺入杂原子Cu2+的KIT-1。所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物。所述固定床反应器的反应条件为:反应温度为240-350℃,氢分压为2-3.5MPa,氢油体积比450-700,体积空速1-2h-1。KIT-1分子筛具有一维孔道彼此交叉形成三维无序结构,该结构有利于催化、吸附过程中的物质传递。纯硅介孔分子筛KIT-1具有比MCM-241、HMS更好的热稳定性和水热稳定性。本专利技术经过在众多介孔材料中,比如KIT-1、KIT-6、MCM-22、MCM-36、MCM-48、MCM-49、MCM56等,进行对比试验选择,发现只有KIT-1能够达到本专利技术的专利技术目的,其他介孔材料都有这样那样的缺陷,在应用到本专利技术中时存在难以克服的技术困难,因此本专利技术选择用KIT-1作为载体基础。纯硅KIT-1介孔分子筛水热性能尽管已经很出色,但专利技术人研究以后发现,其加入杂原子或表面经化学修饰后,其水热稳定性得到更大提高。因此,本专利技术对其进行改性,以增加其催化活性。本专利技术对KIT-1介孔分子筛改性的途径是:向成品的全硅KIT-1介孔分子筛孔道内表面引入Cu2+,这种途径可以通过离子交换将Cu2+负载在KIT-1的内表面,从而在整体上改善了KIT-1介孔分子筛的催化活性、吸附以及热力学稳定性能等。尽管对KIT-1介孔分子筛进行改性的方法或途径很多,专利技术人发现,本专利技术的催化剂只能采用掺杂Cu2+的KIT-1作为载体才能实现硫含量控制效果,专利技术人尝试了在KIT-1中掺杂Al3+、Fe3+、Zn2+、Ga3+等产生阴离子表面中心的离子,发现都不能实现所述效果。尽管所述机理目前并不清楚,但这并不影响本专利技术的实施,专利技术人根据已知理论与实验证实,其与本专利技术的活性成分之间存在协同效应。所述Cu2+在KIT-1中的掺杂量必须控制在特定的含量范围之内,其掺杂量以重量计,为KIT-1重量的0.56%-0.75%,例如0.57%、0.58%、0.59%、0.6%、0.61%、0.62%、0.63%、0.64%、0.65%、0.66%、0.67%、0.68%、0.69%、0.7%、0.71%、0.72%、0.73%、0.74等。专利技术人发现,在该范围之外,会导致焦化汽油脱硫效果的急剧降低。更令人欣喜的是,当Cu2+在KIT-1中的掺杂量控制在0.63%-0.72%范围内时,其脱硫能力最强,当绘制以Cu2+掺杂量为横轴,以目标脱硫效果为纵轴的曲线图时,该含量范围内硫含量能控制在极低的范围之内,其产生的脱硫效果远远超出预期,属于预料不到的技术效果。所述活性组分的总含量为载体KIT-1重量的1%-15%,优选3-12%,进一步优选5-10%。例如,所述含量可以为2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%等。本专利技术中,特别限定活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例,专利技术人发现,不同的混合比例达到的效果完全不同。专利技术人发现,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合比例(摩尔比)为1:(0.4-0.6):(0.28-0.45):(0.8-1.2),只有控制氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比在该范围内,才能够实现焦化汽油中含硫量控制在10ppm以下且脱氮能力显著。也就是说,本专利技术的四种活性组分只有在摩尔比为1:(0.4-0.6):(0.28-0.45):(0.8-1.2)时,才具备协同效应。除开该摩尔比范围之外,或者省略或者替换任意一种组分,都不能实现协同效应。优选的,氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的摩尔比为1:(0.45-0.5):(0.35-0.45):(0.8-1.0),进一步优选为1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最优选1:0.48:0.42:0.95。所述催化剂的制备方法可以采取常规的浸渍法以及其他替代方法,本领域技术人员可以根据其掌握的现有技术自由选择,本专利技术不再赘述。本专利技术典型但非限制性的实例如下:将硅酸钠、十六烷基三甲基溴化铵(CTAB)、乙二胺四乙酸钠(EDTA)和蒸馏水按摩尔比1:0.25:1:60的比例混合,搅拌均匀后装入带有聚四氟乙烯内衬的压力釜中,在373K下恒温24h,重复调节混合物的pH为10.5,恒温4次后,取出产本文档来自技高网
...

【技术保护点】
一种焦化汽油加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分,其特征在于,所述载体为合成骨架结构中掺入杂原子Cu2+的KIT‑1,所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物,所述固定床反应器的反应条件为:反应温度为240‑350℃,氢分压为2‑3.5MPa,氢油体积比450‑700,体积空速1‑2h‑1。

【技术特征摘要】
1.一种焦化汽油加氢精制工艺,所述工艺采用固定床反应器,固定床反应器中装填有加氢催化剂,所述催化剂包括载体和活性组分,其特征在于,所述载体为合成骨架结构中掺入杂原子Cu2+的KIT-1,所述活性组分为氮化二钼MO2N、氮化钨W2N、碳化钼Mo2C和碳化钨WC的混合物,所述固定床反应器的反应条件为:反应温度为240-350℃,氢分压为2-3.5MPa,氢油体积比450-700,体积空速1-2h-1。2.如权利要求1所述的加氢精制工艺,其特征在于,杂原子Cu2+的掺杂量为KIT-1重量的0.63%-0.72%。3.如权利要求1所述的加氢精制工艺,其特征在于,所述活性组分的总含量为载体KIT-1重量的3-12%,优...

【专利技术属性】
技术研发人员:朱忠良
申请(专利权)人:锡山区绿春塑料制品厂
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1