当前位置: 首页 > 专利查询>南通大学专利>正文

前驱体空间分隔式制备镓酸铋薄膜的方法技术

技术编号:12831096 阅读:101 留言:0更新日期:2016-02-07 17:47
前驱体空间分隔式制备镓酸铋薄膜的方法。一种前驱体空间分隔式的自限制性表面吸附反应制备BiGaO3薄膜材料的方法,BiGaO3薄膜材料生长在衬底材料上,BiGaO3薄膜材料的空间群为Pcca,晶格常数为a=5.626Å,b=5.081Å,c=10.339Å,BiGaO3薄膜材料在所选择的衬底上生长得到的择优取向为(112),采用前驱体空间分隔式的自限制性表面吸附反应得到,所述表面吸附反应特指朗缪尔吸附机制的不可逆的化学吸附反应。通过采用本发明专利技术的制备BiGaO3薄膜材料的方法,可以实现BiGaO3薄膜生长厚度的精确可控,且BiGaO3薄膜表面平整度大大优于现有技术。由于各种气体的通入是连续不断、且流速恒定,薄膜的厚度仅取决于衬底转过的次数,工艺变得极为简单、可靠。

【技术实现步骤摘要】
前驱体空间分隔式制备镓酸铋薄膜的方法
本专利技术涉及一种铋基氧化物薄膜材料,具体地说是一种BiGaO3铁电薄膜材料及其制备方法。
技术介绍
近来人们发现铋基铁电材料如铁酸铋(BiFeO3)、钛酸铋(Bi4Ti3O12)、铝酸铋(BiAlO3)等钙钛矿或赝钙钛矿结构的铁电氧化物具有漏电小、抗疲劳特性强、介电常数大以及对环境友好等特点而备受关注。近年来,人们对铁酸铋(BiFeO3)和钛酸铋(Bi4Ti3O12)的设计、制备、物理化学性质及在生产和生活中的应用有了普遍的认识和理解,2005年Baettig等人从理论上预言了镓酸铋(BiGaO3)同样具有优异的铁电性能,然而目前人们对镓酸铋(BiGaO3)材料的制备技术还极为缺乏,仅有报导采用高温高压固相反应法(压强在GPa量级、温度为一千多摄氏度)制备得到镓酸铋(BiGaO3)的块体材料,而这样高温、高压生产条件,显然不适合运用于微电子行业进行器件、集成电路的生产,其块体材料也无法应用于越来越微型化、集成度越来越高的微电子领域,而适用于微电子领域的镓酸铋薄膜的制备工艺尚未有报导。在文献CN103880078A中,我们已经公开了一种采用化学溶液旋涂法制备GaBiO3薄膜材料的方法。然而,在制备大面积高厚度均匀性、厚度纳米级精确可控性方面,化学溶液旋涂法实在无能为力,与半导体制造工艺也难以集成、兼容。
技术实现思路
为了解决现有技术问题,本专利技术的目的在于提供一种可精确控制薄膜厚度的空间分离式自限制性表面吸附反应制备的BiGaO3薄膜材料的方法。实现本专利技术目的具体技术方案是:一种BiGaO3薄膜材料的制备方法,包括但不限于以下具体步骤:A)将清洗洁净的衬底材料用惰性气体吹干,放置入衬底托盘中;B)托盘连同衬底移入真空反应腔,开启真空泵对真空反应腔进行抽真空;C)对真空腔进行加热,使真空腔中的托盘和衬底的温度在整个薄膜生长过程中维持在一个合适的温度窗口;所选择的合适的温度窗口是指:在合适的温度范围内,即衬底的温度高于一个温度下限而低于一个温度上限,且前驱体气体供应的流速大于最低限值的情况下,薄膜的生长速率为一个基本恒定的值,薄膜的生长速率与前驱体气体供应的流速、载气即惰性气体的流速、前驱体的温度、衬底的温度、真空腔的分隔空间的真空度基本无关,这里所述的“基本无关”是指:即使薄膜的生长速率在此温度窗口中有波动,也是轻微波动,当生长温度超出此温度窗口即低于温度下限或高于温度上限,薄膜的生长速率会显著地增加或减小;在温度窗口内,沉积速率不随温度变化;当温度不够高时,前驱体冷凝引起多层吸附导致过高的沉积速率,或导致吸附不完全,反应活性差;温度过高时前驱体分解导致额外的CVD式生长,或由于过高的热动能,前驱体解吸附;真空反应腔中包括有多个分隔空间,分别用于通入铋前驱体气体、镓前驱体气体、氧前驱体气体、惰性气体;D)当真空腔温度恒定一段时间后,设定托盘连同衬底转动的圈数,真空反应腔的不同分隔空间分别通入惰性气体、三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)或其他铋前驱体气体、氧前驱体气体以及三甲基镓气体或其他镓前驱体气体;所有前驱体气体均分别采用惰性气体进行输运;E)衬底托盘带动衬底材料一起运动,在通入三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)或其他铋前驱体气体的分隔空间、通入惰性气体的分隔空间、通入三甲基镓气体或其他镓前驱体气体的分隔空间、通入氧前驱体气体的分隔空间等四种分隔空间之间通过;F)当托盘和衬底转动达到设定的圈数时,停止转动,薄膜厚度达到所需值,得到一定厚度的BiGaO3薄膜材料,停止通入铋前驱体、镓前驱体、氧前驱体,继续通入惰性气体,停止托盘和衬底,停止真空腔的加热进行自然冷却;G)真空腔达到或接近室温时,关闭真空泵,对真空反应腔进行充气使其气压达到一个大气压,取出已沉积得到BiGaO3薄膜材料的衬底;H)将步骤G中得到的附着有BiGaO3薄膜材料的衬底,放入快速退火炉中,进行快速热退火处理,自然冷却后取出。经X射线衍射(XRD)测试及结构精修证实,经过步骤H)所得到的BiGaO3薄膜材料的空间群为Pcca,晶格常数为所述的BiGaO3薄膜材料在所选择的衬底上生长得到的择优取向为(112)。由于本专利技术的方法可实现薄膜生长时厚度精确可控,但每次生长最多仅得到一个原子层的材料,生长速度较低,因此,通常用于生长数个纳米至几十纳米的厚度的BiGaO3薄膜材料,最多几百纳米,小于500纳米,否则其过低的生长速度将会变得无法接受。在本专利技术中,各个分隔空间均为半开放式半封闭式的容器,这些容器均为一段敞口,另一端封闭并设置有气体管路,气体管路用于通入前驱体和/或惰性气体;托盘为圆盘状,并均匀地分布有多个浅槽以容纳衬底,浅槽的深度与衬底的厚度基本相同,以保证衬底在运动过程中不与其他部件发生磕碰为原则。在薄膜生长过程中,托盘带着衬底一起在各个半开放式半封闭式的容器的敞口端运动,并且托盘离其容器口具有一定的距离或称缝隙,该距离在毫米级,以使得通入其中的气体得以从该缝隙排出,并确保托盘带着衬底运动时不会与容器口发生碰撞;前述这些分隔空间的排布规律如下:分别以B、G、O、N分别代表铋前驱体气体、镓前驱体气体、氧前驱体气体、惰性气体,则:在任意一个通入三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)气体或氧前驱体气体或三甲基镓气体的分隔空间的最邻近的一侧或两侧,都还具有一个或多个通入惰性气体的分隔空间,通常为一个或两个分隔空间,即,例如:BN……,或GN……,或ON……,或……NBN……,或……NGN……,或……NON……,此处省略号“……”表示其他可能的排列序列;且在满足上述条件的情况下,在任意一个通入三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)气体或三甲基镓气体的分隔空间的次邻近侧,都还具有一个或多个通入氧前驱体气体的分隔空间,通常为一个分隔空间,即,例如:……NONBN……,或……NONGN……,或……NBNON……,或……NGNON……,此处省略号“……”表示其他可能的排列序列;且在满足上述条件的情况下,通入三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)的分隔空间、通入氧前驱体气体的分隔空间、通入三甲基镓气体的分隔空间、通入惰性气体的分隔空间可以以任意次序排列,可以是多组通入三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)的分隔空间或通入氧前驱体气体的分隔空间或通入三甲基镓气体的分隔空间和通入惰性气体的分隔空间依次连续分布,再邻接一组或多组通入其余前驱体气体的分隔空间;换言之,一个或多个通入三甲基镓气体的分隔空间、一个或多个通入三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)的分隔空间、一个或多个通入氧前驱体气体的分隔空间可以以任意次序排列,举例而言,通入铋前驱体气体、氧前驱体气体、镓前驱体气体、惰性气体的几种分隔空间的排序可以是……BNONBNONBNONGNONBNONGNON……,也可以是……BNONGNONBNONBNONBNONBNONGNON……,还可以是……GNONGNONBNONBNONBNONBNONBNON……,或……GNONBNONBNONBNONBNONGNONBNON本文档来自技高网...
前驱体空间分隔式制备镓酸铋薄膜的方法

【技术保护点】
一种采用前驱体空间分隔式的自限制性表面吸附反应制备BiGaO3薄膜材料的方法,BiGaO3薄膜材料生长在衬底材料上,所述的衬底包括Si、LaNiO3/Si、Pt/TiO2/SiO2/Si、Pt/Ti/SiO2/Si、TiN、SiO2等,所述的BiGaO3薄膜材料的空间群为Pcca,晶格常数为a=5.626Å,b=5.081Å,c=10.339Å,所述的BiGaO3薄膜材料在所选择的衬底上生长得到的择优取向为(112);其特征在于:所述BiGaO3薄膜材料厚度小于500纳米;采用前驱体时间分隔式的自限制性表面吸附反应得到,所述表面吸附反应特指朗缪尔吸附机制的不可逆的化学吸附反应;化学吸附反应在真空反应腔中进行,真空反应腔中包括有多个分隔空间,分别用于通入铋前驱体气体、镓前驱体气体、氧前驱体气体、惰性气体;所有的气体管路中的气流在整个薄膜沉积过程中是持续不断通入的,且各管路的气流的流速、压力均保持恒定不变;在真空反应腔中的各分隔空间的数量为4的倍数且不小于8;各分隔空间依次相邻并首尾衔接形成闭合环,托盘和衬底在这些分隔空间形成的气体氛围中运动;用于通入铋前驱体气体和镓前驱体气体的分隔空间的数量之和等于用于通入氧前驱体的分隔空间的数量,用于通入铋前驱体气体、镓前驱体气体和氧前驱体的分隔空间的数量之和等于用于通入惰性气体的分隔空间的数量;所述分隔空间的排布规律如下:在任意一个通入三(2,2,6,6‑四甲基‑3,5‑庚二酮酸)铋(III)气体或氧前驱体气体或三甲基镓气体的分隔空间的最邻近的一侧或两侧,都还具有一个或多个通入惰性气体的分隔空间,且在满足上述条件的情况下,在任意一个通入三(2,2,6,6‑四甲基‑3,5‑庚二酮酸)铋(III)气体或三甲基镓气体的分隔空间的次邻近侧,都还具有一个或多个通入氧前驱体气体的分隔空间;所采用的铋前驱体为三(2,2,6,6‑四甲基‑3,5‑庚二酮酸)铋(III),镓前驱体为三甲基镓,氧前驱体气体可以是H2O、O2、O3其中任意一种,也可以是其中任意两种或三种的混合气体;所述“惰性气体”不仅仅指通常化学领域所指的惰性气体(氦气、氩气等),还包括在整个薄膜制备过程中不会与前驱体发生化学反应的其他气体,例如:氮气;在整个薄膜生长过程中,所有前驱体气体均分别采用惰性气体进行输运;该方法包括但不限于以下具体步骤:A)将清洗洁净的衬底材料用惰性气体吹干,放置入衬底托盘中;B)托盘连同衬底移入真空反应腔,开启真空泵对真空反应腔进行抽真空;C)对真空腔进行加热,使真空腔中的托盘和衬底的温度在整个薄膜生长过程中维持在一个合适的温度窗口;所选择的合适的温度窗口是指:在合适的温度范围内,即衬底的温度高于一个温度下限而低于一个温度上限,且前驱体气体供应的流速大于最低限值的情况下,薄膜的生长速率为一个基本恒定的值,薄膜的生长速率与前驱体气体供应的流速、载气即惰性气体的流速、前驱体的温度、衬底的温度、真空腔的分隔空间的真空度基本无关,当生长温度超出此温度窗口即低于温度下限或高于温度上限,薄膜的生长速率则会显著地增加或减小;D)当真空腔温度恒定一段时间后,设定托盘连同衬底转动的圈数,真空反应腔的不同分隔空间分别通入惰性气体、三(2,2,6,6‑四甲基‑3,5‑庚二酮酸)铋(III)气体、氧前驱体气体以及三甲基镓气体;E)衬底托盘带动衬底材料一起运动,在通入三(2,2,6,6‑四甲基‑3,5‑庚二酮酸)铋(III)的分隔空间、通入惰性气体的分隔空间、通入三甲基镓气体或其他镓前驱体气体的分隔空间、通入氧前驱体气体的分隔空间等四种分隔空间之间通过;F)当托盘和衬底转动达到设定的圈数时,停止转动,薄膜厚度达到所需值,停止通入铋前驱体、镓前驱体、氧前驱体,继续通入惰性气体,停止托盘和衬底,停止真空腔的加热进行自然冷却;G)真空腔达到或接近室温时,关闭真空泵,对真空反应腔进行充气使其气压达到一个大气压,取出已沉积得到BiGaO3薄膜材料的衬底;H)将步骤G中得到的附着有BiGaO3薄膜材料的衬底,放入快速退火炉中,进行快速热退火处理,自然冷却后取出。...

【技术特征摘要】
1.一种采用前驱体空间分隔式的自限制性表面吸附反应制备BiGaO3薄膜材料的方法,BiGaO3薄膜材料生长在衬底材料上,所述的衬底包括Si、LaNiO3/Si、Pt/TiO2/SiO2/Si、Pt/Ti/SiO2/Si、TiN、SiO2,所述的BiGaO3薄膜材料的空间群为Pcca,晶格常数为a=5.626Å,b=5.081Å,c=10.339Å,所述的BiGaO3薄膜材料在所选择的衬底上生长得到的择优取向为(112);其特征在于:所述BiGaO3薄膜材料厚度小于500纳米;采用前驱体时间分隔式的自限制性表面吸附反应得到,所述表面吸附反应特指朗缪尔吸附机制的不可逆的化学吸附反应;化学吸附反应在真空反应腔中进行,真空反应腔中包括有多个分隔空间,分别用于通入铋前驱体气体、镓前驱体气体、氧前驱体气体、惰性气体;所有的气体管路中的气流在整个薄膜沉积过程中是持续不断通入的,且各管路的气流的流速、压力均保持恒定不变;在真空反应腔中的各分隔空间的数量为4的倍数且不小于8;各分隔空间依次相邻并首尾衔接形成闭合环,托盘和衬底在这些分隔空间形成的气体氛围中运动;用于通入铋前驱体气体和镓前驱体气体的分隔空间的数量之和等于用于通入氧前驱体气体的分隔空间的数量,用于通入铋前驱体气体、镓前驱体气体和氧前驱体气体的分隔空间的数量之和等于用于通入惰性气体的分隔空间的数量;所述分隔空间的排布规律如下:在任意一个通入三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)气体或氧前驱体气体或三甲基镓气体的分隔空间的最邻近的一侧或两侧,都还具有一个或多个通入惰性气体的分隔空间,且在满足上述条件的情况下,在任意一个通入三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)气体或三甲基镓气体的分隔空间的次邻近侧,都还具有一个或多个通入氧前驱体气体的分隔空间;所采用的铋前驱体为三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III),镓前驱体为三甲基镓,氧前驱体可以是H2O、O2、O3其中任意一种,也可以是其中任意两种或三种的混合气体;所述“惰性气体”指在整个薄膜制备过程中不会与前驱体发生化学反应的气体;在整个薄膜生长过程中,所有前驱体气体均分别采用惰性气体进行输运;该方法包括但不限于以下具体步骤:A)将清洗洁净的衬底材料用惰性气体吹干,放置入衬底托盘中;B)托盘连同衬底移入真空反应腔,开启真空泵对真空反应腔进行抽真空;C)对真空腔进行加热,使真空腔中的托盘和衬底的温度在整个薄膜生长过程中维持在一个合适的温度窗口;所选择的合适的温度窗口是指:在合适的温度范围内,即衬底的温度高于一个温度下限而低于一个温度上限,且前驱体气体供应的流速大于最低限值的情况下,薄膜的生长速率为一个基本恒定的值,薄膜的生长速率与前驱体气体供应的流速、载气即惰性气体的流速、前驱体的温度、衬底的温度、真空腔的分隔空间的真空度基本无关,当生长温度超出此温度窗口即低于温度下限或高于温度上限,薄膜的生长速率则会显著地增加或减小;D)当真空腔温度恒定一段时间后,设定托盘连同衬底转动的圈数,真空反应腔的不同分隔空间分别通入惰性气体、三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)气体、氧前驱体气体以及三甲基镓气体;E)衬底托盘带动衬底材料一起运动,在通入三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)的分隔空间、通入惰性气体...

【专利技术属性】
技术研发人员:王志亮尹海宏宋长青张金中史敏
申请(专利权)人:南通大学史敏
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1