当前位置: 首页 > 专利查询>南通大学专利>正文

前驱体时间分隔式制备镓酸铋薄膜的方法技术

技术编号:13011011 阅读:95 留言:0更新日期:2016-03-11 00:10
前驱体时间分隔式制备镓酸铋薄膜的方法。一种前驱体时间分隔式的自限制性表面吸附反应制备BiGaO3薄膜材料的方法,BiGaO3薄膜材料生长在衬底材料上,BiGaO3薄膜材料的空间群为Pcca,晶格常数为a=5.626Å,b=5.081Å,c=10.339Å,BiGaO3薄膜材料在所选择的衬底上生长得到的择优取向为(112),采用前驱体时间分隔式的自限制性表面吸附反应得到,所述表面吸附反应特指朗缪尔吸附机制的不可逆的化学吸附反应。通过采用本发明专利技术的制备BiGaO3薄膜材料的方法,可以实现BiGaO3薄膜生长厚度的精确可控,且BiGaO3薄膜表面平整度大大优于现有技术。

【技术实现步骤摘要】
前驱体时间分隔式制备镓酸铋薄膜的方法
本专利技术涉及一种铋基氧化物薄膜材料,具体地说是一种BiGaO3铁电薄膜材料及其制备方法。
技术介绍
近来人们发现铋基铁电材料如铁酸铋(BiFeO3)、钛酸铋(Bi4Ti3O12)、铝酸铋(BiAlO3)等钙钛矿或赝钙钛矿结构的铁电氧化物具有漏电小、抗疲劳特性强、介电常数大以及对环境友好等特点而备受关注。近年来,人们对铁酸铋(BiFeO3)和钛酸铋(Bi4Ti3O12)的设计、制备、物理化学性质及在生产和生活中的应用有了普遍的认识和理解,2005年Baettig等人从理论上预言了镓酸铋(BiGaO3)同样具有优异的铁电性能,然而目前人们对镓酸铋(BiGaO3)材料的制备技术还极为缺乏,仅有报导采用高温高压固相反应法(压强在GPa量级、温度为一千多摄氏度)制备得到镓酸铋(BiGaO3)的块体材料,而这样高温、高压生产条件,显然不适合运用于微电子行业进行器件、集成电路的生产,其块体材料也无法应用于越来越微型化、集成度越来越高的微电子领域,而适用于微电子领域的镓酸铋薄膜的制备工艺尚未有报导。在文献CN103880078A中,我们已经公开了一种采用化学溶液旋涂法制备GaBiO3薄膜材料的方法。然而,在制备大面积高厚度均匀性、厚度纳米级精确可控性方面,化学溶液旋涂法实在无能为力,与半导体制造工艺也难以集成、兼容。
技术实现思路
为了解决现有技术问题,本专利技术的目的在于提供一种可精确控制薄膜厚度的时空分离式自限制性表面吸附反应制备的BiGaO3薄膜材料的方法。实现本专利技术目的具体技术方案是:一种BiGaO3薄膜材料的制备方法,采用专门设计的装置来完成,所述装置具有如下的特征:包括有铋前驱体源1、铋前驱体管路手动阀K1、铋前驱体管路自动阀AK1、铋前驱体载气管路质量流量控制器MFC1、镓前驱体源2、镓前驱体管路手动阀K2、镓前驱体管路自动阀AK2、镓前驱体载气管路质量流量控制器MFC2、氧前驱体源3、氧前驱体管路手动阀K3、氧前驱体管路自动阀AK3、氧前驱体载气管路质量流量控制器MFC3、惰性气体源4、惰性气体管路手动阀K4、真空反应腔、真空泵、真空泵进气口自动阀门AK4、设备控制器,真空反应腔中设有电加热器和温度传感器,设备控制器可以是PLC、单片机系统、计算机或专门设计的电路系统;铋前驱体源1、镓前驱体源2、氧前驱体源3的容器均设有电加热器和半导体制冷器;铋前驱体源1的出口通过气体管路依次连接到铋前驱体管路手动阀K1、铋前驱体管路自动阀AK1、真空反应腔,镓前驱体源2的出口通过气体管路依次连接到镓前驱体管路手动阀K2、镓前驱体管路自动阀AK2、真空反应腔,氧前驱体源3的出口通过气体管路依次连接到氧前驱体管路手动阀K3、氧前驱体管路自动阀AK3、真空反应腔,惰性气体源4的出口通过气体管路连接到惰性气体管路手动阀K4,再通过分支管路分别连接到铋前驱体载气管路质量流量控制器MFC1、镓前驱体载气管路质量流量控制器MFC2、氧前驱体载气管路质量流量控制器MFC3,铋前驱体载气管路质量流量控制器MFC1的出口通过三通连接件连接在铋前驱体管路自动阀AK1与真空反应腔之间的气体管路上,镓前驱体载气管路质量流量控制器MFC2的出口通过三通连接件连接在镓前驱体管路自动阀AK2与真空反应腔之间的气体管路上,氧前驱体载气管路质量流量控制器MFC3的出口通过三通连接件连接在铋前驱体管路自动阀AK3与真空反应腔之间的气体管路上,真空反应腔的出口通过管路依次连接到真空泵进气口自动阀门AK4、真空泵的进气口;铋前驱体源1、铋前驱体管路自动阀AK1、铋前驱体载气管路质量流量控制器MFC1、镓前驱体源2、镓前驱体管路自动阀AK2、镓前驱体载气管路质量流量控制器MFC2、氧前驱体源3、氧前驱体管路自动阀AK3、氧前驱体载气管路质量流量控制器MFC3、真空反应腔、真空泵、真空泵进气口自动阀门AK4、真空反应腔中的电加热器、温度传感器、所述容器的电加热器和半导体制冷器均通过电缆连接到设备控制器均通过电缆连接到设备控制器,由设备控制器集中控制各自的工作状态;温度传感器的采集数据通过电缆传输给设备控制器,以实现温度的PID控制(比例-积分-微分控制),可以使真空反应腔的温度迅速、准确地达到设定的温度值;铋前驱体管路手动阀K1、镓前驱体管路手动阀K2、氧前驱体管路手动阀K3、惰性气体管路手动阀K4均由操作人员手动打开,不受控制器所控制,这种设计可以确保安全;由设备控制器控制铋前驱体源1、镓前驱体源2、氧前驱体源3的容器的电加热器和半导体制冷器的工作状态,以使铋前驱体源1、镓前驱体源2、氧前驱体源3的温度可以恒定在设定的温度值;所述BiGaO3薄膜材料的制备方法,包括但不限于以下具体步骤:A)将清洗洁净的衬底材料用惰性气体吹干,放置入衬底托盘中;B)托盘连同衬底移入真空反应腔,通过设备控制器开启真空泵,然后再打开真空泵进气口自动阀门AK4,对真空反应腔进行抽真空;C)在设备控制器上设定铋前驱体源1、镓前驱体源2、氧前驱体源3的温度,由设备控制器控制铋前驱体源1、镓前驱体源2、氧前驱体源3的容器的电加热器和/或半导体制冷器的工作状态,以使铋前驱体源1、镓前驱体源2、氧前驱体源3的温度恒定在设定的温度值,使在所设置的各前驱体的温度值下,铋前驱体源1、镓前驱体源2、氧前驱体源3的蒸汽压力大于惰性气体源4通过质量流量控制器MFC1、MFC2、MFC3后气体管路中的压力;由设备控制器控制电加热器对真空腔进行加热,使真空腔中的托盘和衬底的温度在整个薄膜生长过程中维持在一个合适的温度窗口;所选择的合适的温度窗口是指:在合适的温度范围内,即衬底的温度高于一个温度下限而低于一个温度上限,且前驱体气体供应的流速大于最低限值的情况下,薄膜的生长速率为一个基本恒定的值,薄膜的生长速率与前驱体气体供应的流速、载气即惰性气体的流速、前驱体的温度、衬底的温度、真空腔的分隔空间的真空度基本无关,这里所述的“基本无关”是指:即使薄膜的生长速率在此温度窗口中有波动,也是轻微波动,当生长温度超出此温度窗口即低于温度下限或高于温度上限,薄膜的生长速率会显著地增加或减小;在温度窗口内,沉积速率不随温度变化;当温度不够高时,前驱体冷凝引起多层吸附导致过高的沉积速率,或导致吸附不完全,反应活性差;温度过高时前驱体分解导致额外的CVD式生长,或由于过高的热动能,前驱体解吸附;D)当真空腔温度恒定一段时间后,通常为5~30分钟,在设备控制器上设定薄膜生长的循环次数、铋前驱体载气管路气体流速、镓前驱体载气管路气体流速、氧前驱体载气管路气体流速、惰性气体流速;手动打开铋前驱体管路手动阀K1、镓前驱体管路手动阀K2、氧前驱体管路手动阀K2、惰性气体管路手动阀K4;E)由设备控制器控制铋前驱体载气管路质量流量控制器MFC1、镓前驱体载气管路质量流量控制器MFC2、氧前驱体载气管路质量流量控制器MFC3,使得各气体管路中气体按照步骤D)中的设定值通入真空反应腔,真空反应腔按照一定的气体脉冲时序分别通入惰性气体、三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)或其他铋前驱体气体、氧前驱体气体以及三甲基镓气体或其他镓前驱体气体;所有前驱体气体均分别采用惰性气体进行输运;F本文档来自技高网...
前驱体时间分隔式制备镓酸铋薄膜的方法

【技术保护点】
一种前驱体时间分隔式的自限制性表面吸附反应制备BiGaO3薄膜材料的方法,BiGaO3薄膜材料生长在衬底材料上,所述的衬底包括Si、LaNiO3/Si、Pt/TiO2/SiO2/Si、Pt/Ti/SiO2/Si、TiN、SiO2等,所述的BiGaO3薄膜材料的空间群为Pcca,晶格常数为a=5.626Å,b=5.081Å,c=10.339Å,所述的BiGaO3薄膜材料在所选择的衬底上生长得到的择优取向为(112);其特征在于:所述BiGaO3薄膜材料厚度小于500纳米;采用前驱体时间分隔式的自限制性的表面吸附反应得到;所述表面吸附反应特指朗缪尔吸附机制的不可逆的化学吸附反应;化学吸附反应在真空反应腔中进行,铋前驱体气体脉冲、镓前驱体气体脉冲、氧前驱体气体脉冲、惰性气体脉冲按照一定的次序依次通入真空反应腔中;所述铋前驱体为三(2,2,6,6‑四甲基‑3,5‑庚二酮酸)铋(III);所述镓前驱体为三甲基镓;所述氧前驱体气体可以是H2O、O2、O3其中任意一种,也可以是其中任意两种或三种的混合气体;所述“惰性气体”不仅仅指通常化学领域所指的惰性气体(氦气、氩气等),还包括在整个薄膜制备过程中不会与前驱体发生化学反应的其他气体,例如:氮气;在整个薄膜生长过程中,所有前驱体气体均分别采用惰性气体进行输运;该方法包括但不限于以下具体步骤:A)将清洗洁净的衬底材料用惰性气体吹干,放置入衬底托盘中;B)托盘连同衬底移入真空反应腔,开启真空泵对真空反应腔进行抽真空;C)设定铋前驱体源、镓前驱体源、氧前驱体源的温度,使铋前驱体源、镓前驱体源、氧前驱体源的温度恒定在设定的温度值;对真空腔进行加热,使真空腔中的托盘和衬底的温度在整个薄膜生长过程中维持在一个合适的温度窗口;所选择的合适的温度窗口是指:在合适的温度范围内,即衬底的温度高于一个温度下限而低于一个温度上限,且前驱体气体供应的流速大于最低限值的情况下,薄膜的生长速率为一个基本恒定的值,薄膜的生长速率与前驱体气体供应的流速、载气即惰性气体的流速、前驱体的温度、衬底的温度、真空腔的分隔空间的真空度基本无关,这里所述的“基本无关”是指:即使薄膜的生长速率在此温度窗口中有波动,也是轻微波动,当生长温度超出此温度窗口即低于温度下限或高于温度上限,薄膜的生长速率会显著地增加或减小;D)当真空腔温度恒定5~30分钟后,设定薄膜生长的循环次数、铋前驱体载气管路气体流速、镓前驱体载气管路气体流速、氧前驱体载气管路气体流速;E)控制铋前驱体载气管路质量流量控制器、镓前驱体载气管路质量流量控制器、氧前驱体载气管路质量流量控制器,使得各气体管路中气体按照步骤D)中的设定值通入真空反应腔,真空反应腔按照一定的气体脉冲时序分别通入惰性气体、铋前驱体气体、氧前驱体气体以及镓前驱体气体;所述气体脉冲时序由惰性气体脉冲、三(2,2,6,6‑四甲基‑3,5‑庚二酮酸)铋(III)或其他铋前驱体气体脉冲、氧前驱体气体脉冲以及三甲基镓气体或其他镓前驱体气体脉冲组成,分别以N、B、O、G来代表惰性气体脉冲、三(2,2,6,6‑四甲基‑3,5‑庚二酮酸)铋(III)或其他铋前驱体气体脉冲、氧前驱体气体脉冲以及三甲基镓气体或其他镓前驱体气体脉冲,则所述气体脉冲时序的规律如下:在任意一个三(2,2,6,6‑四甲基‑3,5‑庚二酮酸)铋(III)气体脉冲或氧前驱体气体脉冲或三甲基镓气体脉冲的之前或之后,都具有一个惰性气体脉冲;且在满足上述条件的情况下,在任意一个三(2,2,6,6‑四甲基‑3,5‑庚二酮酸)铋(III)气体脉冲或三甲基镓气体脉冲的次邻近处,都还具有一个氧前驱体气体脉冲;且在满足上述条件的情况下,这些气体脉冲序列由设备控制器控制相应管路中的自动阀的开、关以实现,并由程序执行特定序列的生长周期循环;在一个生长周期中,各个气体脉冲的数量为4的倍数且不小于8;各个气体脉冲通过管路依次通入真空反应腔中,托盘和衬底依次暴露在这些气体脉冲形成的气体氛围中;且,在一个生长周期中,铋前驱体气体脉冲和镓前驱体气体脉冲的数量之和等于氧前驱体脉冲的数量,铋前驱体气体脉冲、镓前驱体气体脉冲和氧前驱体气体脉冲的数量之和等于惰性气体脉冲的数量;F)当薄膜生长循环次数达到设定的次数时,薄膜厚度达到所需值,得到一定厚度的BiGaO3薄膜材料,停止通入铋前驱体、镓前驱体、氧前驱体,继续通入惰性气体,停止对真空腔加热;G)真空反应腔进行自然冷却;H)真空腔达到或接近室温时,关闭真空泵进气口阀门;I)对真空反应腔进行充气使其气压达到一个大气压,真空反应腔内外气压达到平衡状态;J)取出已沉积得到BiGaO3薄膜材料的衬底,关闭惰性气体管路手动阀K4;K)将步骤J中得到的附着有BiGaO3薄膜材料的衬底,放入快速退火炉中,进行快速热退火处理,自然冷却后取出。...

【技术特征摘要】
1.一种前驱体时间分隔式的自限制性表面吸附反应制备BiGaO3薄膜材料的方法,BiGaO3薄膜材料生长在衬底材料上,所述的衬底包括Si、LaNiO3/Si、Pt/TiO2/SiO2/Si、Pt/Ti/SiO2/Si、TiN、SiO2,所述的BiGaO3薄膜材料的空间群为Pcca,晶格常数为a=5.626Å,b=5.081Å,c=10.339Å,所述的BiGaO3薄膜材料在所选择的衬底上生长得到的择优取向为(112);其特征在于:所述BiGaO3薄膜材料厚度小于500纳米;采用前驱体时间分隔式的自限制性的表面吸附反应得到;所述表面吸附反应特指朗缪尔吸附机制的不可逆的化学吸附反应;化学吸附反应在真空反应腔中进行,铋前驱体气体脉冲、镓前驱体气体脉冲、氧前驱体气体脉冲、惰性气体脉冲按照一定的次序依次通入真空反应腔中;所述铋前驱体为三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III);所述镓前驱体为三甲基镓;所述氧前驱体气体可以是H2O、O2、O3其中任意一种,也可以是其中任意两种或三种的混合气体;所述“惰性气体”指在整个薄膜制备过程中不会与前驱体发生化学反应的气体;在整个薄膜生长过程中,所有前驱体气体均分别采用惰性气体进行输运;该方法包括但不限于以下具体步骤:A)将清洗洁净的衬底材料用惰性气体吹干,放置入衬底托盘中;B)托盘连同衬底移入真空反应腔,开启真空泵对真空反应腔进行抽真空;C)设定铋前驱体源、镓前驱体源、氧前驱体源的温度,使铋前驱体源、镓前驱体源、氧前驱体源的温度恒定在设定的温度值;对真空腔进行加热,使真空腔中的托盘和衬底的温度在整个薄膜生长过程中维持在一个合适的温度窗口;所选择的合适的温度窗口是指:在合适的温度范围内,即衬底的温度高于一个温度下限而低于一个温度上限,且前驱体气体供应的流速大于最低限值的情况下,薄膜的生长速率为一个基本恒定的值,薄膜的生长速率与前驱体气体供应的流速、载气即惰性气体的流速、前驱体的温度、衬底的温度、真空腔的分隔空间的真空度基本无关,这里所述的“基本无关”是指:即使薄膜的生长速率在此温度窗口中有波动,也是轻微波动,当生长温度超出此温度窗口即低于温度下限或高于温度上限,薄膜的生长速率会显著地增加或减小;D)当真空腔温度恒定5~30分钟后,设定薄膜生长的循环次数、铋前驱体载气管路气体流速、镓前驱体载气管路气体流速、氧前驱体气体载气管路气体流速;E)控制铋前驱体载气管路质量流量控制器、镓前驱体载气管路质量流量控制器、氧前驱体气体载气管路质量流量控制器,使得各气体管路中气体按照步骤D)中的设定值通入真空反应腔,真空反应腔按照一定的气体脉冲时序分别通入惰性气体、铋前驱体气体、氧前驱体气体以及镓前驱体气体;所述气体脉冲时序由惰性气体脉冲、三(2,2,6,6-四甲基-3,5-庚二酮酸)铋(III)或其他铋前驱体气体脉冲、氧前驱体气体脉冲以及三甲基镓气体或其他镓前驱体气体脉...

【专利技术属性】
技术研发人员:尹海宏王志亮宋长青张金中史敏
申请(专利权)人:南通大学史敏
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1