一种合成超细颗粒金刚石用铁基粉末触媒制造技术

技术编号:12820493 阅读:78 留言:0更新日期:2016-02-07 11:51
本发明专利技术公开了一种合成超细颗粒金刚石用铁基粉末触媒,以重量百分数计,其合金成分为Mn 25%~40%,Ni 5~15%,Zn 2~10%,余量为Fe。本发明专利技术采用电子理论为指导选取触媒合金的主要成分,产品球形度好,化学成分均匀,粒度在400~600目的出粉率可达80%以上。采用该粉末触媒合成的金刚石中粒度为400目以细的比例可占85%以上,金刚石晶体完整率高,透明度好。与目前合成细颗粒金刚石用的镍基触媒相比,本发明专利技术铁基粉末触媒可明显降低生产成本,具有显著的经济效益。

【技术实现步骤摘要】

本专利技术涉及一种合成超细颗粒金刚石用铁基粉末触媒
技术介绍
工业上把400目以细的金刚石称为超细颗粒金刚石,人工合成的具备完整晶形的超细颗粒金刚石单晶与经过破碎整形的同粒度的金刚石单晶相比,具有晶形完整、内部缺陷少、热稳定性高等一系列优点,在半精加工、精加工、高精加工和精密抛光等方面有着其它材料不可替代的优势。影响人造金刚石粒度的因素是多方面的,其中触媒剂作为合成金刚石的必备原料,可有效降低金刚石的合成温度和压力,同时对金刚石的粒度和性能有着决定性的影响。但是,目前广泛使用的粉末触媒合成的金刚石颗粒多在200目以粗,难以合成400目以细的产品,而且目前公布的合成超细颗粒金刚石用粉末触媒专利多是Ni基触媒,在一定程度上使金刚石的生产成本增加。相关的专利如:中国专利技术专利申请号为0114858.X的专利提出一种合成细粒度金刚石用粉末触媒,其合金成分为(按重量百分比数计):Mn 24-26%,Co 4.5-5.5%,添加微量元素 C、A1、N,C 0.6-2.0%, A1 0.02-0.2%, N 50_100ppm,余量为 Ni。该粉末触媒适用于高产细粒度金刚石的生产,但其粒度峰值仅在-170/+200目,-200/+230目之间,且触媒为Ni基触媒,成本相对较高。中国专利技术专利申请号为201410463437.9的专利提出一种合成超细颗粒金刚石用粉末触媒,以重量百分比表示,所述粉末触媒主要由以下合金成分制成:Fe20%~25%, Co 3%~5%, Ce 0.5%~2%, Mn 3%~5%, SiC 0.5-1%, Mo 0.5%~1%,余量为 Ni,应用于合成超细金刚石单晶,可以生产出400目以细的单晶金刚石。该触媒采用Ni基金属为主要原料,虽可以控制金刚石的结晶质量,但成本相对较高。
技术实现思路
本专利技术为克服上述现有技术的不足,提供一种可用于合成超细颗粒金刚石的铁基粉末触媒。本专利技术的目的是采用下述技术方案实现的:一种合成超细颗粒金刚石用铁基粉末触媒,各组分按重量百分数计,Μη 25-40%, Ni 5-15%, Zn 2~10%,余量为Fe。制备时,按配方配好原料,将配好的原料投入氩气保护中频炉中熔化、精炼。采用高压气雾化工艺制备粉状合金。将粉状合金筛分,分别选取粒度为400~600目的粉状合金为产品。筛分好的粉状合金置于氢还原炉中进行还原。将触媒合金粉与石墨粉按一定比例均匀混合,高温处理后,进行金刚石的合成,合成温度1300-1350°C、压力5-5.5GPa。本专利技术采用电子理论来指导触媒剂主要成分的选取。方法如下: 大量实验结果表明,铁基触媒合金在高温时主要物相为γ - (Fe, Me)固溶体(Me指Fe、N1、Mn、Co),触媒合金与石墨在高温高压条件下可形成?%(:型碳化物,碳化物的分解与金刚石的形核长大有密切联系,而γ固溶体则起着促使碳化物分解的作用。固体与分子经验电子理论(余氏理论,ΕΕΤ)利用键距差方法通过已知的晶格常数可以计算固体或分子的价电子结构,从而进一步可以求出晶体中某晶面的价电子结构及该晶面上单位面积的共价电子数即共价电子密度。程氏改进的TFD理论(程氏理论,TFDC)提出:材料中原子间的边界条件要满足量子力学所要求的电子密度要保持连续。据此将EET和TFDC两个电子理论相结合应用到触媒剂的选取中,可以通过分析碳化物和γ固溶体相应晶面的电子密度连续性,即可分析触媒的催化效应。本专利技术通过对不同成分及配比y_(Fe,Me)固溶体与Fe3C界面的电子密度连续性进行计算分析,从中找出触媒剂的最佳配方并验证效果。当Fe3C和γ _(Fe,Me)固溶体界面的最小电子密度差Δ p <10%时,认为界面处电子密度连续,且A p越小,电子密度连续性越好。计算发现y-(Fe,Me)固溶体与Fe3CW面的电子密度均连续,但不同元素组成以及不同成分配比的y_(Fe,Me)与Fe3CW面的电子密度连续性不同。根据价电子理论,y-(Fe,Me)与Fe3C界面的电子密度连续性越好,越容易促使C原子集团从碳化物中的脱落,进而转移到与之电子密度相近的金刚石生长界面上,完成金刚石晶体的生长。反应在实际合成中就是(Fe,Me)与Fe3C界面的电子密度连续性越好,越易促使Fe3C分解,从而金刚石的生长速度就越快。对于Fe-Ni触媒,当Ni含量增加到20%以上时,Δ p值开始变大,电子密度连续性下降,即随着含Ni量的增加,金刚石生长速度会变慢,相应的金刚石合成实验验证了这一结论,Fe-Mn触媒的变化趋势跟Fe_Ni一致,Fe-Co触媒中Co含量对其电子密度连续性影响不大。因此,根据计算结果,可以调节触媒的成分配比以控制金刚石的生长速度,结合其它合成条件的调整,可以合成超细晶粒金刚石单晶。本专利技术的优点: (1)选用铁作为余量,即铁基触媒。铁基触媒需要的温度低,合成时间短;触媒活性大,合成单产高;成本低。(2) Μη的加入,从电子理论分析,当Μη含量超过20%后,随含量增加,可以减缓金刚石的生长速度,控制晶粒度的粗细,替代Ni,可以大大降低触媒成本。此外Μη是金刚石和石墨的相间活化元素,可以提高触媒粉末浸润石墨的能力,增加形核率,同时Μη的加入可以明显降低熔点。(3)Ni的适量加入,可以辅助提高金刚石纯净度,促进金刚石品质的提高。(4) Zn的添加,可以抑制金刚石晶体内包裹体的形成,而且Zn在一定程度上能减缓金刚石的生长速度,控制晶粒度粗细。(5)气雾化制备触媒粉末后,采取氢还原处理,降低了触媒中的氧含量,有助于提高金刚石的品质。采取高温处理石墨和金属触媒的混合物的方法,预先获得可兼做触媒和原料的整体中散布着大量石墨微晶的金属材料,促进超细颗粒金刚石的大量成核。(6)由于触媒主要采用Fe、Mn,大大减少了 Ni的含量,整体价格比现有技术中的镍基触媒的价格低,合成的金刚石颗粒粒度< 400目的比例可达85%以上,晶形完整率高,透明度良好,可显著提高经济效益。【附图说明】附图为Fe3C和不同含Me (Me指N1、Mn、Co)量的γ _(Fe,Me)固溶体界面的最小电子密度差Δ p。【具体实施方式】根据附图所示的电子理论计算分析结果,当铁基触媒中,Ni含量超过20%或Μη含量超过20%时,Y-(Fe,Ni)/Fe3C& γ - (Fe,Mn)/Fe3C界面的电子密度差都会随着Ni或Μη的含量增加而显著增大,即电子密度连续性降低,从而可以明显减缓金刚石晶体的生长速度。因此,以此电子理论分析为指导,可以用Μη来适当替代Ni,以Fe、Μη为主要成分制备触媒。以下结合具体实施例,对本专利技术进一步详细说明。本专利技术并不局限于这些实施例,其保护范围由权利要求书阐明。实施例1: 本实施例中一种合成超细颗粒金刚石用铁基粉末触媒,按重量百分数计Μη 25%,Ni15%,Zn 10%,余量为 Fe。制备时,按配方配好原料,将配好的原料投入氩气保护中频炉中熔化、精炼。采用高压气雾化工艺制备粉状合金。将粉状合金筛分,选取粒度为400目的粉状合金为产品。筛分好的粉状合金置于氢还原炉中进行还原。将触媒合金粉与石墨粉按一定比例均匀混合,高温处理后,进行金刚石的合成。合成的金刚石颗粒粒度< 400目的比例约占本文档来自技高网
...
一种合成超细颗粒金刚石用铁基粉末触媒

【技术保护点】
一种合成超细颗粒金刚石用铁基粉末触媒,其特征在于:按重量百分数计,其合金成分为Mn 25%~40%,Ni 5~15%,Zn 2~10%,余量为Fe。

【技术特征摘要】

【专利技术属性】
技术研发人员:李丽王建民高术振
申请(专利权)人:河北工程大学
类型:发明
国别省市:河北;13

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1