制备纳米材料的椭球面形氧化铝模板及其制备方法技术

技术编号:12203664 阅读:99 留言:0更新日期:2015-10-14 16:59
一种制备纳米材料的椭球面形氧化铝模板及其制备方法。其特征是模板的内外两面均为椭球面,圆锥形纳米孔洞阵列以椭球面长轴为中心,沿椭球面短轴方向辐射状有序排列,圆锥形纳米孔孔径大小及变化率沿椭球面经线、纬线的切向和椭球面垂直方向三维渐变。其制备方法是将椭球面形高纯铝片经过抛光、阳极氧化、去除阻碍层后得到。本发明专利技术中的椭球面形氧化铝模板对纳米材料的合成提供一种便利的途径,其制备方法简单可行。

【技术实现步骤摘要】

:本专利技术涉及用于制备纳米材料的椭球面形氧化铝模板以及该模板的制备方法。
技术介绍
:随着科学技术的不断发展,许多新的学科不断兴起。纳米材料学便是其中一例。纳米材料的制备是纳米材料应用的基础。目前制备纳米材料多采用的方法有:模板法、气相沉积法、光刻法、液相法、离子束刻蚀法等等。而其中的模板法是一种最基本的方法。目前较成熟的模板大约有四种:碳纳米管、离子束刻蚀碳膜、生物微胶束和氧化铝模板。氧化铝模板由于具有孔密度大、纳米孔长径比(孔长度/孔直径)可调等特点,使其成为目前应用最为广泛的模板之一。它是将99.99%的纯铝片放在适当的酸性溶液(如草酸、硫酸或磷酸等)中,通过阳极氧化得到的纳米孔洞阵列体系。上世纪90年代初以来,人们已经利用氧化铝模板成功合成了许多纳米结构材料,如:纳米纤维、纳米棒、纳米管和纳米线等。这些纳米材料展现出令人心仪的应用前景,有些甚至已经走出实验室阶段,如碳纳米管用于场发射、半导体纳米线激光器等。但是,关于氧化铝模板,目前得到应用的是平面形氧化铝模板,即它的上下两个表面都是平面,不利于纳米材料实现功能的器件化。不仅如此,平面形氧化铝模板中的纳米孔洞呈现直筒状并且平行排列,利用这种模板组装的纳米材料的功能单一。依照现有的方法,实现圆锥形纳米孔洞辐射状有序排列的氧化铝模板是不可能的。
技术实现思路
:本专利技术为了解决现有技术的不足,提供一种。为纳米材料的合成提供一种便利的途径。本专利技术解决技术问题所采用的技术方案是:本专利技术椭球面形氧化铝模板的特点是模板的内外两面均为椭球面,以椭球面长轴为中心,圆锥形纳米孔洞沿椭球面短轴辐射状有序排列,圆锥形纳米孔孔径大小及变化率沿椭球面经线、纬线的切向和椭球面垂直方向三维渐变,并且还可以通过改变阳极氧化时间以及椭球面长轴、中轴、短轴的大小调节。椭球面形铝片经过抛光、阳极氧化、去除阻碍层后得到椭球面形氧化铝模板。本专利技术的具体制备方法包括如下顺序的步骤:①将平面形高纯铝片覆盖在椭球体模具表面,经过锻压定型后得到椭球面形铝片,或者在椭球体模具表面真空蒸镀铝后再去掉椭球体模具得到椭球面形铝片;②椭球面形铝片在乙醇与高氯酸的混合液中抛光4-5分钟;③取出铝片用去离子水冲洗3-5次;④将椭球面形铝片放入草酸溶液中阳极氧化20小时;⑤去掉椭球面形铝片上的氧化层;⑥椭球面形铝片在草酸溶液中进行第二次阳极氧化8小时;⑦去掉未氧化的铝层以及阻碍层,⑧用去离子水冲洗3-5次,在室温下晾干。与已有技术相比,本专利技术有以下技术效果:1、几何特性。椭球面形氧化铝模板的内外表面都是椭球面,相对于平面模板在纳米材料的器件化方面具有较大优势,比如由椭球面形模板可以制成椭球面镜、椭球面透镜坐寸ο2、电学性质。平行排列、直径均匀的纳米线(管、棒)和辐射状有序排列、圆锥形纳米线(管、棒)的电学性质有很大的差异。已经发现,不同直径铋纳米线的电子输运性质不同,或为半金属或为半导体,利用椭球面形氧化铝模板可以组装得到辐射状有序排列且直径在三维方向(椭球面经线、纬线切向和椭球面垂直方向)渐变的纳米线(管、棒)阵列,从而可以在一根纳米线上实现半金属到半导体的转变,为纳米材料的器件化奠定了基础。3、光学性质。理论和实验都已证明,辐射状有序排列、直径渐变的纳米线(管、棒)具有奇异的光学性质。比如,辐射状排列的银纳米线阵列可以实现亚波长超分辨放大成像等。利用椭球面形氧化铝模板可以组装得到辐射状有序排列且直径在三维方向(椭球面经线、纬线切向和椭球面垂直方向)渐变的纳米线(管、棒)阵列,可以实现纳米材料优异的光学性能。本制备方法的有益效果体现在:椭球面形氧化铝模板的制备方法操作简单、可靠、锥形孔径大小及孔径变化率可以在三维方向(椭球面经线、纬线切向和椭球面垂直方向)渐变,并且还可以通过改变阳极氧化时间以及椭球面的长轴、中轴、短轴的大小调节。【附图说明】:图1为本专利技术椭球面形铝片经过阳极氧化后的实物图。图2为本专利技术椭球面形氧化铝模板的实物图。【具体实施方式】:本实施例中的椭球面形氧化铝模板的内外两面都是椭球面,以椭球面长轴为中心,圆锥形纳米孔洞沿椭球面短轴辐射状有序排列,圆锥形纳米孔的孔径大小及孔径变化率在三维方向(椭球面经线、纬线的切向和椭球面垂直方向)渐变,并且还可以通过改变阳极氧化时间以及椭球面长轴、中轴、短轴的大小调节。图1中的虚线分别表示椭球面形模板的经线、纬线和椭球面垂直方向。图2中的虚线分别表示椭球面形模板的经线和纬线。针对本实施例中的氧化铝模板,其制备方法的具体步骤为:(I)将平面形高纯铝片覆盖在椭球体模具表面,经过锻压定型后得到椭球面形铝片,或者在椭球体模具表面真空蒸镀铝后再去掉椭球体模具得到椭球面形铝片;(2)椭球面形铝片在乙醇与高氯酸(体积比为5: I)的混合液中抛光4-5分钟,电压为14-15伏特,温度为10摄氏度;(3)取出铝片用去离子水冲洗3-5次;(4)将椭球面形铝片放入0.3M草酸溶液中阳极氧化20小时,氧化电压为40伏特,温度为5摄氏度;(5)将(4)得到的铝片放入按体积比1:1混合的磷酸(1.6% wt)和铬酸(6%wt)的溶液中,在60摄氏度下,放置2个小时,去掉椭球面形铝片上的氧化层;(6)椭球面形铝片在0.3M草酸溶液中进行第二次阳极氧化8小时,电压为40伏特,温度为5摄氏度;(7)将(6)得到的椭球面形氧化铝片放入饱和氯化汞溶液中2小时,去掉未氧化的铝层;(8)将(7)得到的椭球面形氧化铝片用去离子水冲洗3-5次;(9)将(8)得到椭球面形氧化铝片放入0.1M的磷酸溶液中,在30摄氏度下放置20分钟,去掉阻碍层;(10)将(9)得到的椭球面形氧化铝片用去离子水冲洗3-5次,在室温下晾干。实验表明:在相应条件的草酸溶液中阳极氧化得到的椭球面形氧化铝模板完成以上步骤后,锥形孔洞以椭球面长轴为中心,沿椭球面短轴呈现辐射状有序排列。在图2所示的A点附近,其锥形孔沿模板表面垂线方向的最小和最大直径分别为:56nm和78nm,纳米孔径的变化率为0.55nm/ μ m,在图2所示的B点附近,其锥形孔沿模板表面垂线方向的最小和最大直径分别为:60nm和80nm,纳米孔径的变化率为0.50nm/ μ m,即沿模板经线切向和模板表面垂线方向,纳米孔的孔径及孔径变化率渐变;在图2所示的C点附近,其锥形孔沿模板表面垂线方向的最小和最大直径分别为68nm和84nm,纳米孔径的变化率为0.AQxm/ μ m,在D点附近,其锥形孔沿模板表面垂线方向的最小和最大直径分别为65nm和73nm,纳米孔径的变化率为0.45nm/ μ m,即沿模板纬线切向和模板表面垂线方向,纳米孔的孔径及孔径变化率渐变,所以模板上圆锥形纳米孔的孔径大小及孔径变化率在三维方向渐变,也可以通过改变阳极氧化时间以及椭球面长轴、中轴、短轴的大小调节锥形孔孔径的大小和孔径变化率,扫描电子显微镜的直接观察可以证实方法的可行性。【主权项】1.一种制备纳米材料的椭球面形氧化铝模板,其特征是模板的内外两面均为椭球面,圆锥形纳米孔洞阵列以椭球面长轴为中心,沿椭球面短轴辐射状有序排列,圆锥形纳米孔孔径大小及变化率沿椭球面经线、纬线的切向和椭球面垂直方向三维渐变。2.—种权利要求1所述的制备纳米材料的椭球面形氧化铝模板的制备方法,其特本文档来自技高网...
<a href="http://www.xjishu.com/zhuanli/46/CN104975321.html" title="制备纳米材料的椭球面形氧化铝模板及其制备方法原文来自X技术">制备纳米材料的椭球面形氧化铝模板及其制备方法</a>

【技术保护点】
一种制备纳米材料的椭球面形氧化铝模板,其特征是模板的内外两面均为椭球面,圆锥形纳米孔洞阵列以椭球面长轴为中心,沿椭球面短轴辐射状有序排列,圆锥形纳米孔孔径大小及变化率沿椭球面经线、纬线的切向和椭球面垂直方向三维渐变。

【技术特征摘要】

【专利技术属性】
技术研发人员:庞岩涛赵俊卿张美生张宝金李鲁艳庄世栋王婕王惠临
申请(专利权)人:山东建筑大学
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1