当前位置: 首页 > 专利查询>东南大学专利>正文

内嵌金属化过孔幅度校准的封装夹层天线制造技术

技术编号:8535541 阅读:131 留言:0更新日期:2013-04-04 19:58
内嵌金属化过孔幅度校准的封装夹层天线涉及一种喇叭天线。该天线包括集成在一块介质基板(4)上的上的微带馈线(1)、喇叭天线(2)和金属化过孔(3),介质基板(4)在三维封装(5)的内层,微带馈线(1)一端通过封装侧面的共面波导(7)与内部电路(8)相连,喇叭天线(2)由底面金属平面(9)、顶面金属平面(10)和金属化过孔侧壁(11)组成,由金属化过孔(3)构成的中间金属化过孔阵列(16)、左边金属化过孔阵列(17)和右边金属化过孔阵列(18),在喇叭天线(2)中形成四个介质填充波导,这四个介质填充波导的一端都朝微带馈线(1)方向,另一端位置都靠近天线口径面(12)。该天线可以提高天线的口径效率。

【技术实现步骤摘要】

本专利技术涉及一种喇叭天线,尤其是一种内嵌金属化过孔幅度校准的封装夹层天线
技术介绍
采用叠层三维多芯片(3D-MCM)技术,可以把一个射频系统集成在一个三维叠层封装内,为此也需要把天线集成在封装上。通常是在封装的表面集成天线,例如把贴片天线集成在封装的最上面。但是有时会需要把天线集成在封装中间的一个夹层以满足系统的需要。如果在封装内部夹层中集成喇叭天线就可以实现上述要求。但是,通常喇叭天线是非平面的,与平面电路工艺的不兼容、具有的较大的几何尺寸,从而限制了其在封装结构上的应用。近年来,基于基片集成波导技术发展的基片集成波导喇叭天线具有尺寸小、重量轻、易于平面集成的特点,但传统的基片集成波导喇叭天线的增益相对比较低,其中一个原因 在于口径面上电磁场的幅度很不均匀,中间大两边小,影响天线的辐射性能。目前已有采用介质加载、介质棱镜等方法,矫正喇叭口径面相位的不同步,但是这些方法都不能改善口径面上电磁场幅度分布的均匀性,而且这些相位校准结构增加了天线的整体结构尺寸,不适合集成到封装内部夹层。
技术实现思路
技术问题本专利技术的目的是提出一种内嵌金属化过孔幅度校准的封装夹层天线,该天线内部嵌有金属化过孔阵列以改善天线口径面上电磁波幅度分布的一致性、同时减少口径面零场区的数量,提高夹层天线的口径效率和增益。技术方案本专利技术的一种内嵌金属化过孔幅度校准的封装夹层天线包括设置在介质基板上的微带馈线、基片集成波导喇叭天线和内嵌金属化过孔,介质基板在三维封装的内层;所述微带馈线通过共面波导与三维封装的内部电路相连;基片集成波导喇叭天线由位于介质基板一面的底面金属平面、位于介质基板另一面的顶面金属平面和穿过介质基板连接底面金属平面顶面金属平面的金属化过孔喇叭侧壁组成;基片集成波导喇叭天线中内嵌的金属化过孔连接底面金属平面和顶面金属平面,并构成中间金属化过孔阵列、左边金属化过孔阵列和右边金属化过孔阵列;在喇叭天线中有第一介质填充波导、第二介质填充波导、第三介质填充波导和第四介质填充波导,第一介质填充波导、第二介质填充波导、第三介质填充波导和第四介质填充波导的一个端口都朝着微带馈线方向,其另一端口都平齐并靠近的天线口径面。所述的微带馈线的一端与喇口入天线相连,微带馈线的另一端靠近封装侧面,是天线的输入输出端口 ;微带馈线通过天线输入输出端口与封装侧面的共面波导的一端相连,共面波导的另一端与封装内部电路相连。所述的基片集成波导喇叭天线由窄截面波导和喇叭形波导串接构成;窄截面波导的一端是微带馈线,窄截面波导的另一端与喇叭形波导相连,喇叭形波导的一端与窄截面波导相连,喇叭形波导的另一端是天线口径面。所述的中间金属化过孔阵列位于基片集成波导喇叭天线的两个侧壁中间的位置,并把基片集成波导喇叭天线分为左右对称的两部分,在中间的金属化过孔阵列的两侧,对称的有左边介质填充波导和右边介质填充波导。所述的左边金属化过孔阵列把左边介质填充波导分成第一介质填充波导和第二介质填充波导,右边金属化过孔阵列把右边的介质填充波导分成第三介质填充波导和第四介质填充波导。所述的左边金属化过孔阵列和右边金属化过孔阵列形状都是由头端直线段、多边形和尾端直线段三段相连构成,左边金属化过孔阵列和右边金属化过孔阵列的头端都朝着微带馈线方向,左边金属化过孔阵列和右边金属化过孔阵列的尾端伸向天线口径面,但不到天线口径面上。所述的中间金属化过孔阵列、左边金属化过孔阵列和右边金属化过孔阵列中的直线段的形状可以是直线、折线或指数线等,其长度可以是零或者是有限长度。所述的左边金属化过孔阵列和右边金属化过孔阵列中的多边形可以是三角形、四边形、五边形或其它多边形,多边形的一条边或者多条边的形状可以是直线、弧线或其它曲线。选择左边金属化过孔阵列中头端直线段或多边形在左边介质填充波导(19)中的位置,使得通过第一介质填充波导和第二介质填充波导中传输的两路电磁波等幅到达介质填充波导的端口再到天线的口径面上辐射。选择右边金属化过孔阵列中头端直线段或多边形在右边介质填充波导(20)中的位置,使得通过第三介质填充波导和第四介质填充波导中传输的两路电磁波等幅到达介质填充波导的端口再到天线的口径面上辐射。中间金属化过孔阵列、左边金属化过孔阵列和右边金属化过孔阵列中的直线段的形状可以是直线、折线或指数线等,其长度可以是零或者是有限长度;左边金属化过孔阵列和右边金属化过孔阵列中的多边形可以是三角形、四边形、五边形或其它多边形,多边形的一条边或者多条边的形状可以是直线、弧线或其它曲线。在介质填充波导中,电磁波主模(TE10模)的场强幅度分布规律与介质填充波导端口的宽度有关,如果多个介质填充波导的宽度都一样,其主模的的场强幅度分布规律就相同;而且如果这些介质填充波导输入的功率都是相同的话,则这些介质填充波导端口上的场强幅度大小及分布都相同。来自封装内部电路的电磁波信号经过三维封装侧面的共面波导进入天线输入输出端口,再通过微带馈线进入到基片集成波导喇叭天线,在向天线的口径面方向传播一段距离后,遇到中间的金属化过孔阵列,就分成功率相等的两路分别进入左右两个介质填充波导传输。左右两个介质填充波导完全对称,以左边的介质填充波导为例说明。当电磁波进入左边的介质填充波导传输后一段距离后,将遇到一个金属化过孔阵列,再被分成两路通过介质填充波导向口径面传输;调整左边的介质填充波导该金属化过孔阵列头端的位置以及金属化过孔阵列中多边形顶点的位置,可以改变这两路电磁波传输的相对功率,进而调整通过两个介质填充波导传输的电磁波在天线口径面上的相对幅度;如果这两个介质填充波导在天线口径面附近的端口宽度相等,调整在左边介质填充波导中左边金属化过孔阵列的头端及多边形顶点的位置,可以使得通过两个介质填充波导传输的电磁波同功率到达介质填充波导的端口进而再到达天线的口径面;电磁波在右边的介质填充波导中传输也是同样的情况。以上述方式就可以控制在天线口径面附近电磁波的幅度分布,如果保持在天线口径面附近的四个介质填充波导的端口宽度相等,并调整金属化过孔阵列的头端及多边形顶点的位置使得通过这四个介质填充波导传输电磁波的同功率到达介质填充波导的端口进而再到达天线口径面,就可以使得在天线口径面附近的场强幅度分布一致,这样就可以达到提高天线的口径效率和增益的目的。另外由于口径面上除喇叭侧壁是零场区外,口径面的其它区域没有零场区,这样口径面的场强分布也相对更均匀。同理也可以按照需要在天线的口径面附近实现特定的场强幅度分布。有益效果本专利技术内嵌金属化过孔幅度校准的封装夹层天线的有益效果是,使得天线口径面上电磁波的幅度分布更均匀,还避免在天线口径面上出现较多的零场区,从而提高了封装夹层天线的口径效率和增益。 附图说明图1为内嵌金属化过孔幅度校准的封装夹层天线整体封装结构示意图。图2为内嵌金属化过孔幅度校准的封装夹层天线正面结构示意图。图3为内嵌金属化过孔幅度校准的封装夹层天线反面结构示意图。图中有微带馈线1、基片集成波导喇叭天线2、内嵌金属化过孔3、介质基板4、三维封装5,天线输入输出端口 6、共面波导7、内部电路8、底面金属平面9、顶面金属平面10、金属化过孔喇叭侧壁11、天线的口径面12、天线的窄截面波导13、天线的喇叭形波导14、接地面15、中间金属化过孔阵本文档来自技高网...

【技术保护点】
一种内嵌金属化过孔幅度校准的封装夹层天线,其特征在于该天线包括设置在介质基板(4)上的微带馈线(1)、基片集成波导喇叭天线(2)和内嵌金属化过孔(3),介质基板(4)在三维封装(5)的内层;所述微带馈线(1)通过共面波导(7)与三维封装(5)的内部电路(8)相连;基片集成波导喇叭天线(2)由位于介质基板(4)一面的底面金属平面(9)、位于介质基板(4)另一面的顶面金属平面(10)和穿过介质基板(4)连接底面金属平面(9)顶面金属平面(10)的金属化过孔喇叭侧壁(11)组成;基片集成波导喇叭天线(2)中内嵌的金属化过孔(3)连接底面金属平面(9)和顶面金属平面(10),并构成中间金属化过孔阵列(16)、左边金属化过孔阵列(17)和右边金属化过孔阵列(18);在喇叭天线(2)中有第一介质填充波导(21)、第二介质填充波导(22)、第三介质填充波导(23)和第四介质填充波导(24),第一介质填充波导(21)、第二介质填充波导(22)、第三介质填充波导(23)和第四介质填充波导(24)的一个端口都朝着微带馈线(1)方向,其另一端口(25)都平齐并靠近的天线口径面(12)。

【技术特征摘要】
1.一种内嵌金属化过孔幅度校准的封装夹层天线,其特征在于该天线包括设置在介质基板(4)上的微带馈线(I)、基片集成波导喇叭天线(2)和内嵌金属化过孔(3),介质基板 (4 )在三维封装(5 )的内层;所述微带馈线(I)通过共面波导(7 )与三维封装(5 )的内部电路(8)相连;基片集成波导喇叭天线(2)由位于介质基板(4)一面的底面金属平面(9)、位于介质基板(4)另一面的顶面金属平面(10)和穿过介质基板(4)连接底面金属平面(9)顶面金属平面(10)的金属化过孔喇叭侧壁(11)组成;基片集成波导喇叭天线(2)中内嵌的金属化过孔(3)连接底面金属平面(9)和顶面金属平面(10),并构成中间金属化过孔阵列(16)、 左边金属化过孔阵列(17)和右边金属化过孔阵列(18);在喇叭天线(2)中有第一介质填充波导(21)、第二介质填充波导(22)、第三介质填充波导(23)和第四介质填充波导(24),第一介质填充波导(21)、第二介质填充波导(22 )、第三介质填充波导(23 )和第四介质填充波导(24)的一个端口都朝着微带馈线(I)方向,其另一端口( 25 )都平齐并靠近的天线口径面 (12)。2.根据权利要求1所述的一种内嵌金属化过孔幅度校准的封装夹层天线,其特征在于所述的微带馈线(I)的一端与喇ΠΛ天线(2)相连,微带馈线(I)的另一端靠近封装侧面,是天线的输入输出端口(6);微带馈线(I)通过天线输入输出端口(6)与封装侧面的共面波导(7)的一端相连,共面波导(7)的另一端与封装内部电路(8)相连。3.根据权利要求1所述的一种内嵌金属化过孔幅度校准的封装夹层天线,其特征在于所述的基片集成波导喇叭天线(2)由窄截面波导(13)和喇叭形波导(14)串接构成;窄截面波导(13)的一端是微带馈线(I ),窄截面波导(13)的另一端与喇叭形波导(14)相连,喇叭形波导(14)的一端与窄截面波导(13)相连,喇叭形波导(14)的另一端是天线口径面(12)。4.根据权利要求1所述的一种内嵌金属化过孔幅度校准的封装夹层天线,其特征在于所述的中间金属化过孔阵列(16)位于基片集成波导喇叭天线(2)的两个侧壁(11)中间的位置,并把基片集成波导喇叭天线(2)分为左右对称的两部分,在中间的金属化过...

【专利技术属性】
技术研发人员:赵洪新殷晓星王磊
申请(专利权)人:东南大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1