本发明专利技术公开了一种生物基水溶性高分子溶液的制备方法,包括以下步骤:1)将胺和生物基二元酸经第一反应得到缩聚高分子,再用水溶解,得到缩聚高分子的水溶液;2)将步骤1)得到的缩聚高分子的水溶液与环氧卤代烷或1,3-二卤-2-丙醇经过第二反应得到生物基水溶性高分子溶液,其制备过程简单易控,产物稳定。本发明专利技术制备方法可制备低成本、固含量可调的生物基水溶性高分子溶液,解决现有蛋白质胶黏剂耐水性差、固化剂来源于石化资源的问题,不但没有甲醛释放、粘接强度和耐水性大大提高,而且易于制备、使用方便。本发明专利技术还提供了一种生物基水溶性高分子溶液的应用,可作为固化剂使用,可应用于制备蛋白质胶黏剂。
【技术实现步骤摘要】
本专利技术涉及高分子合成领域,具体涉及一种生物基水溶性高分子溶液及其制备方法和在蛋白质I]父黏剂中的应用。
技术介绍
我国木材工业用胶黏剂主要是“三醛胶”(脲醛胶、酚醛胶、三聚氰胺-甲醛胶)。“三醛胶”的原料均来自于石油等化工产品,资源有限,不可再生;另外,“三醛胶”制品在生产和使用过程中会释放第I类致癌物质游离醛,易引起人们的呼吸不适以及眼睛和喉咙的疼痛,严重危害产业工人和消费者的身体健康。美国的《复合木制品甲醛标准法案》(Formaldehyde Standards for Composite Wood Act)和美国加州空气资源管理委员会CARB (California Air Resources Board)颁布的ATCM《有毒物质空气传播控制措施》,对 复合木制品中的甲醛含量做了严格要求,这些法规法案的实施必将对我国的木材胶合制品出口企业造成冲击。为了应对甲醛危害、实现生物质资源的有效利用,利用可再生的蛋白质资源制作木材胶黏剂,引起了各国研究者的广泛兴趣。近年来,研究者利用通过各种手段,有效地提高了蛋白质胶黏剂的粘接强度和耐水性。以乳清蛋白为例,Gao等人通过加入聚甲烷二苯基二异氰酸酯(p-MDI)、聚乙烯醇(PVA)、聚醋酸乙烯酯(PVAc)、纳米碳酸钙,制备出乳清蛋白基的水性高分子-异氰酸酯(API)胶黏剂,其干强度和湿强度分别达到13. 38MPa和6. 8IMPa,与市售的API胶黏剂相当,满足日本JIS K6804-2003标准中关于结构胶的强度要求(Zhenhua Gao, et al. J. Appl.Polym. Sci. 2011,120:220-225)。但是该乳清蛋白基的水性高分子-异氰酸酯(API)胶黏剂存在着储存期过短(不足3个小时)的技术问题。以植物蛋白为例,Hettiarachchy等人以碱改性方法提高了大豆蛋白质胶黏剂的粘接强度和耐水性(Hettiarachchy, N. S. et al. J. Am. Oil. Chem. Soc. 1995, 72, 1461) ;Sun和Bian发现以尿素改性大豆蛋白胶黏剂比碱改性有更好的效果(Sun, S. X. and Bi an, K. etal. J. Am. Oil. Chem. Soc. 1999,76,977);其他现有技术中,还有利用其他改性剂对大豆胶黏剂进行改性,其他改性剂如有胰蛋白酶、盐酸胍、十二烷基硫酸钠和十二烷基苯磺酸钠等。利用碱伸展蛋白质分子时蛋白质常会被水解,从而对蛋白质分子造成一定的破坏,对大豆蛋白质胶黏剂的粘接强度和耐水性提高效果不佳,其他改性剂是利用这些小分子改性剂把大豆蛋白质分子伸展而不至于破坏蛋白质分子,但是提高效果仍然有限,达不到产业化的要求。另外,利用小分子试剂改性的大豆蛋白质胶黏剂存在固含量低、耐水性不佳的问题,固含量低必然导致人造板在制作过程中为了干燥水分而产生更多的能耗,并且粘接强度和耐水性不佳。例如,在专利号为ZL200710072642. 2、名称为“单宁酸改性豆粉胶粘剂及其制备方法”的专利技术专利中,公开了一种利用单宁酸改性得到的豆粉胶黏剂,由100重量份的豆粉、600重量份的水和2 14重量份的单宁酸制成;专利号为ZL200710072643. 7、名称为“硼酸改性豆粉胶粘剂及其制备方法”的专利技术专利中,公开了一种利用硼酸改性得到的豆粉胶黏剂,由100重量份的豆粉、600重量份的水和2 14重量份的硼酸制成;上述的两个中国专利中,其豆粉仅占豆粉胶黏剂重量的14. 0% 14. 2%,且豆粉胶黏剂在胶合板试样在经过30°C水浸泡2h、63°C烘干Ih后的剪切强度都不超过O. 66MPa。与“三醛胶”共混虽然可以提高大豆蛋白质胶黏剂的耐水性,但不能摆脱甲醛的使用和释放。例如,Wescott和Frihart采用与酹和醒共聚合的方法制备了大豆蛋白的胶黏剂分散体系,其中,豆粉的用量可占到体系固含量的70%,可使通用的酚醛胶的成本降低209Γ40%,这种酸性的胶黏剂分散体不但呈现出很好的耐水性,而且适用期达到20天以上,可以用来粘接室外用板材或 制备复合材(Wescott J. ,Frihart C. US专利,US7345136)。Li Kaichang等开发了商品化的大豆基木材胶黏剂,并被Clumbia ForestProducts 公司用在胶合板的制作上(Li, K. et al. J. Am. Oil. Chem. Soc. 2004, 8, 487; US 授权专利,US7, 252,735B2)。通过阳离子高聚物一聚酰胺聚胺表氯醇树脂(PAE)与大豆蛋白质作用从而很大程度上提高了粘接强度和耐水性。PAE是湿强树脂,广泛用于纸浆工业,PAE是水溶的聚酰胺聚胺与环氧氯丙烷反应而成的阳离子高聚物,含活泼的氮杂环丁基功能团,该氮杂环被认为是增强大豆蛋白胶耐水性的主要官能团,可与含活泼氢的功能团反应,例如,-C00H、-OH、-NH2等,反应产生耐水性较好的交联网络结构,从而大大提高了大豆蛋白质胶黏剂的耐水性。Li Kaichang又在以上专利的基础上加以改进获得了加拿大专利CA2458159,该专利用豆粉和PAE作为原材料,在碱性氢氧化物或硼酸盐作用下以达到耐水性的要求。但是,PAE存在黏度大、固含量低的问题,而且其合成原料都来源于石化资源,随着石化资源的枯竭,其价格将越来越高,不利于蛋白胶的可持续发展。蛋白胶的生物基固化剂是指用来增强蛋白胶的固化剂或交联剂全部或部分来源于生物质资源,尽可能减少石化资源作为蛋白胶固化剂或交联剂的使用。目前可查的只有——篇文献 艮道。
技术实现思路
为了解决现有蛋白质胶黏剂耐水性差、固化剂来源于石化资源的问题,从而提供一种生物基的水溶性高分子溶液作为蛋白质胶黏剂的固化剂。本专利技术提供了一种生物基水溶性高分子溶液的制备方法,其制备过程简单易控,产物稳定。一种生物基水溶性高分子溶液的制备方法,包括以下步骤I)将胺和生物基二元酸经第一反应得到缩聚高分子,再用水溶解,得到缩聚高分子的水溶液;所述的胺为式I结构或者式II结构的化合物; r^NH2Vh Η Jx y 八I;式II;其中,式I中的η为广700的整数;式II中χ为f 10的整数,y为f 10的整数;所述的生物基二元酸为苹果酸、酒石酸、天冬氨酸、谷氨基酸、葡萄糖二酸、呋喃二甲酸、己二酸、丁二酸、丙二酸、衣康酸中的一种或两种以上;2)将步骤I)得到的缩聚高分子的水溶液与环氧卤代烷或1,3- 二卤-2-丙醇经过第二反应得到生物基水溶性高分子溶液。本专利技术利用生物基二元酸与胺再与环氧卤代烷或1,3_ 二卤-2-丙醇合成的生物基水溶性高分子溶液是一种生物基的聚酰胺聚胺-环氧卤代烷或1,3- 二卤-2-丙醇复合物溶液,所用原料里,生物基二元酸来源于生物质资源,环氧卤代烷和1,3- 二卤-2-丙醇可以通过甘油合成,因而也可以来源于生物质资源,只有胺是来源于石化资源,合成中大大减少了石化资源的使用,为蛋白质胶黏剂的可持续发展提供了技术支撑。与商业PAE相比,本专利技术中,N-(3-氯-2-羟基丙基)基团也是生物基水溶性高分子溶液的主要功能团,氮杂环 结构不是必须的,因而,相对于现有技术,本专利技术合成生物基本文档来自技高网...
【技术保护点】
一种生物基水溶性高分子溶液的制备方法,其特征在于,包括以下步骤:1)将胺和生物基二元酸经第一反应得到缩聚高分子,再用水溶解,得到缩聚高分子的水溶液;所述的胺为式I结构或者式II结构的化合物;其中,式I中的n为1~700的整数;式II中x为1~10的整数,y为1~10的整数;所述的生物基二元酸为苹果酸、酒石酸、天冬氨酸、谷氨基酸、葡萄糖二酸、呋喃二甲酸、己二酸、丁二酸、丙二酸、衣康酸中的一种或两种以上;2)将步骤1)得到的缩聚高分子的水溶液与环氧卤代烷或1,3?二卤?2?丙醇经过第二反应得到生物基水溶性高分子溶液。FDA00002261915900011.jpg
【技术特征摘要】
【专利技术属性】
技术研发人员:桂成胜,朱锦,刘小青,周拓,吴頔,王古月,
申请(专利权)人:中国科学院宁波材料技术与工程研究所,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。