铸芯的制造制造技术

技术编号:818776 阅读:196 留言:0更新日期:2012-04-11 18:40
一种用以形成熔模铸芯的方法包括:从高熔点金属基板上切出一定型式的型芯前体。切削沿着切口形成重铸层。在非重铸区域生长氧化物。大致化学去除重铸层,但大致留下氧化物。然后对型芯前体定型。

【技术实现步骤摘要】
本专利技术涉及熔模铸造法。更具体地说,本专利技术涉及用以在超合金铸造中形成内部特征的高熔点金属型芯。
技术介绍
熔模铸造法是形成具有复杂几何形状的金属元件,特别是中空元件,通用的技术,它还用于超合金燃气涡轮发动机元件的制造。燃气涡轮发动机广泛地应用在航空推进、发电以及船舶推进中。在燃气涡轮发动机应用中,效率为首要目标。可通过在更高温度下运作来改善燃气涡轮发动机效率,但当今涡轮机部分内的运作温度超过了涡轮元件中超合金材料的熔点。因此,实践中常用到气体冷却。发动机的压缩机部分排出的冷气相对流经待冷却的涡轮机元件的通道,从而可达到冷却效果。此种冷却会给发动机效率带来相应的成本问题。因此,就迫切需要有增强型专门冷却方法,使之能从给定量冷却气体获得最大的冷却效果。通过使用精巧的精确定位的冷却通道可达到这一目的。关于内冷式涡轮发动机零件如叶桨与叶片的熔模铸造,现已有很完善的领域。在一种示例方法中,铸模具有一个或多个型腔,每个型腔的形状基本对应于待铸零件的形状。用以制备铸模的示例方法牵涉到一个或多个零件蜡模的使用。将蜡浇铸到基本与零件内冷却通道正面对应的陶瓷型芯上,从而形成模型。在壳型铸造方法中,以众所周知的方式在一个或多个此种模型周围形成陶瓷壳型。可通过在蒸压器中熔化的方法来除蜡。可对壳型进行烧制处理以使壳型硬化。这使得铸模包括的壳型具有一个或多个局部限定的隔间,而隔间又依次地包含有限定的冷却通道的陶瓷型芯。然后将熔融合金导入铸模中来铸造零件。一旦合金冷却并固化,就可将壳型与型芯从铸成零件处机械并/或化学去除。然后可对零件进行一级或多级机加工与处理。将陶瓷粉末与粘结料的混合物注入淬硬钢模中,然后对其铸造可形成陶瓷型芯本身。在将湿砂芯从模具中去除以后,对其进行后期热处理以去除粘结料,并将湿砂芯与陶瓷粉末烧结到一起。向更精细冷却特征的趋向已使型芯制造技术承受重担。很难制造出精细特征,即使形成,也是脆弱的。Shat et al正在普通转让期的美国专利6,637,500揭示了在熔模铸造法中普遍使用高熔点金属型芯。但各种金属在更高温度下,如在烧制壳型温度与熔融超合金温度的邻近温度下有氧化的倾向。因此,壳型烧制会降低高熔点金属型芯的质量,从而可能产生不合意的零件内部特征。因此就需要在高熔点金属型芯基体上运用保护层来使基体避免高温氧化。
技术实现思路
即使使用高熔点金属型芯,要形成精细特征也有困难。有一种特殊的制造技术的最佳协同。具体而言,激光切削对于在高熔点金属薄板中形成精细特征是一种有利的技术。但是,激光切削所生热量会沿切口生成脆性重铸层。在接下来的成形与/或处理过程中,重铸层上的初始裂纹会扩展到基体金属中。这会导致微小型芯分支的断裂。因此就需要除去重铸层来控制此种开裂。但是,基本的化学方法会除去与去除的重铸层深度一样深的基体金属。这可兼顾尺寸整体,包括反向作用可预测性与一致性。相应地,需要优先去除重铸层。相应地,本专利技术一个方面牵涉到一种形成熔模铸芯的方法,它包括从高熔点金属底板上切除出一定形式的型芯前体。切削沿着切口形成重铸层。在非重铸区会生长氧化物。大体上用化学方法来去除重铸层(如化学方法较之其它方法更有针对性)。去除方法大致会留下氧化物(如大部分,通常超过90%)。从而形成了型芯前体。以下附图与说明陈述了本专利技术一种或多种实施例的细节。从说明、附图以及权利要求书中会更容易理解本专利技术的其它特征、目的与优势。附图说明图1为高熔点金属型芯的制造与使用方法的流程图。图2为已氧化钼型芯内的具有重铸层的激光切口的图形。图3为重铸并去除氧化物后的钼型芯内的激光切口的图形。在各种附图中,类似的参考数字与标示代表类似的元素。具体实施例方式图1显示了一种高熔点金属型芯(RMC)制造与使用的示例方法(已经简化以便阐述)。用含有激光切削的方法来形成型芯前体。比方说,可用激光来进行全部切削(也就是说,从较大板上切出前体,然后切出大规模特征与小规模特征)。或者,可用机械方法如模切来进行粗切削,对薄板品种进行模切,然后进行更微小规模特征的激光切削(如芯脚形成冷却出口)。示例板材实质上为纯钼。激光切削沿切口形成重铸物质。作为去除重铸层的开始,氧化物会在非重铸区域生长。示例氧化物为热生长(TGO),当然也可能有化学生长氧化物。示例氧化过程牵涉到在气体循环干燥炉中的加热。可选择加热时间与温度以形成足够的钼氧化物作为保护层,但过多反而会影响尺寸容差。示例时间与温度为60±5分钟,700±25华氏度(357-385摄氏度)。可将零件插入预热干燥炉中并去除容许部分以进行气体冷却。示例氧化物的量少于25微米(1-12.5微米)。在此方法中会形成各种钼氧化物。图2显示了具有一个激光切削孔22的钼型芯20。示例型芯由约0.35毫米厚的薄板品种形成(如0.10-0.20英寸(0.25-0.51毫米))。重铸层24呈现在孔的切削周边。图中氧化层26沿着两个型芯面,这引起轻微的厚度增加(如增加到0.38毫米)重铸层24具有脆的层状结构。在氧化物生长之后,大致去除重铸层。示例去除法为化学方法,运用化学蚀刻如酸性蚀刻。示例酸液为水与硝酸/硫酸的混合物(如体积上为50%硝酸,5%硫酸及45%的水)。可在实际环境条件(大气压力,温度65-75华氏度(18-24摄氏度))下进行示例去除。去除过程可能牵涉到浸入与机械搅动。示例浸入时间为45±5秒。可改变溶液组成与时间以满足去除重铸层的要求。重铸层的量将根据激光强度而改变。示例重铸层厚度为2.5-12.5微米。示例去除过程会在临界带状区域除去至少90%的重铸层,而不会影响非重铸区域。在去除重铸层后,可有选择地大致去除氧化物。示例去除法为化学方法,运用化学蚀刻如碱性蚀刻。可将零件浸入碱性溶液中。示例浸入是在环境压力与稍高温下进行的。示例溶液、时间与温度为PH值10-12、时间约为10秒、温度140±10华氏度(54-66摄氏度)。从WestHaven公司的Enthone处获得一种示例碱性溶液,商标为ENPREP35。示例去除法去除至少90%的氧化物。实际上最好是全部去除。全部母料的损失量取决于氧化物的量。氧化物转变了母料并将导致大量板料损失。示例值约为5-15微米。在激光切削特征(如孔等)上的材料损失可能实际上等于重铸层厚度(如2.5-12.5微米)。图3显示了一个具有周边30的型芯孔,周边30的重铸层已被清理掉。可将切削型芯前体定型/成形(如通过弯曲)来提供相对回旋形状以铸出所需特征。可在定型/成形之前或之后有选择地应用保护层。一些示例保护层是金属的。示例淀积法可以是物理淀积法或化学淀积法。示例物理淀积法为离子汽相淀积(IVD)与冷喷淀积。示例IVD与冷喷淀积技术可分别参见美国军队标准Mil-C8.488(关于纯铝)与Alkhimovet al.的美国专利5,302,414。示例化学方法包括电镀法。然后淀积层可能会至少部分氧化。示例氧化作用是通过化学方法如阳极氧化处理、硬保护层(一族高压阳极氧化处理法)与微弧氧化作用而进行的。示例微弧法可参见美国专利6,365,028、6,197,178与5,616,229。其余示例保护层为陶瓷的。可将RMC与其它型芯(如其它RMC与/或陶瓷供给型芯)一起组装。示例陶瓷供给型芯可以分别形成(如用硅基材料本文档来自技高网
...

【技术保护点】
一种用以形成熔模铸芯的方法,包括:从高熔点金属基板上切出一定型式的型芯前体,切削沿着切口形成重铸层;在非重铸区域生长氧化物:大致化学去除重铸层,但大致留下氧化物:以及对型芯前体定型。

【技术特征摘要】
US 2005-9-19 11/2300801.一种用以形成熔模铸芯的方法,包括从高熔点金属基板上切出一定型式的型芯前体,切削沿着切口形成重铸层;在非重铸区域生长氧化物大致化学去除重铸层,但大致留下氧化物以及对型芯前体定型。2.依据权利要求1所述方法,其中切削包括激光切削。3.依据权利要求1所述方法,其中前体的主要重量部分为钼。4.依据权利要求1所述方法,其中生长包括热生长。5.依据权利要求1所述方法,其中生长包括基本在大气压下在空气中加热。6.依据权利要求1所述方法,其中大致化学去除重铸层包括化学蚀刻达25-45秒。7.依据权利要求1所述方法,其中大致化学去除重铸层包括化学蚀刻达25-60秒。8.依据权利要求1所述方法,其中大致化学去除重铸层包括化学蚀刻达25-30秒。9.依据权利要求1所述方法,还包括化学去除氧化物。10.依据权利要求9所述方法,其中化学去除氧化物包括用碱性清洗液清洗。11.依据权利要...

【专利技术属性】
技术研发人员:ND朱奇JJ小帕科斯GM罗马斯尼
申请(专利权)人:联合工艺公司
类型:发明
国别省市:US[美国]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1