【技术实现步骤摘要】
本专利技术涉及一种超精密加工机床精度设计方法,具体涉及一种基于频域误差分配的且适用于加工光学晶体的超精密飞切机床精度设计方法。
技术介绍
光学晶体是一种极具应用价值的光学元件材料,可用来制造透镜、棱镜、调制元件、偏光元件等。在大型惯性约束激光核聚变系统中,光学元件有极高的表面质量要求,这种高要求不仅体现在对空间域误差的控制上,更体现在对波前质量进行全空间频段的控制。因为光学元件的低频波前畸变误差直接决定激光束的焦斑分布,而中、高频的波前畸变误差作为光束强度和相位扰动的噪声源,不但易造成焦斑旁瓣,也是引起非线性自聚焦破坏的主要原因之一。光学元件的中频段误差难以用传统的RMS和PV误差值来描述,目前主 要以波前功率谱密度指标PSD值来评价该误差,其要求较为严格。超精密飞切机床能较好地适用于各向异性光学晶体元件的加工,一般为立式结构布局,具有较短的运动链和紧凑的结构环,系统刚度较高。传统的超精密飞切机床设计没有考虑工件表面的频域误差要求,使机床的加工质量虽对诸如面形误差RMS值和PV值等要求满足较好,但对满足频域误差要求的可靠性不足,导致工件并不能很有效地应用于大型光 ...
【技术保护点】
一种基于频域误差分配的超精密飞切机床精度设计方法,其特征在于:所述设计方法的具体步骤为:步骤一、根据光学工件的加工要求,即给出的评价待加工的光学元件一定的空间频率区间的误差即频域误差的功率谱密度,用PSD表示,确定超精密机床的结构布局以及组成部件;步骤二、根据刀具特性、机床结构刚度模型以及工件材料特性确定切削工艺参数;所述机床刚度模型通过有限元方法得到,所述切削工艺参数是指主轴转速、刀具进给速率、刀具前角和切削深度;步骤三、确定刀具和工件耦合条件下的动态波动估计模型,给出刀尖处在一定的空间频率区间的波动误差,即刀尖处的功率谱密度,用PSDd表示,其中30%PSD≤PSDd≤ ...
【技术特征摘要】
【专利技术属性】
技术研发人员:梁迎春,陈国达,孙雅洲,张强,张飞虎,刘海涛,陈万群,苏浩,
申请(专利权)人:哈尔滨工业大学,
类型:发明
国别省市:
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。