当前位置: 首页 > 专利查询>天津大学专利>正文

高临界电流密度甘氨酸掺杂MgB2超导体及制备方法技术

技术编号:7507985 阅读:215 留言:0更新日期:2012-07-11 06:54
本发明专利技术涉及一种高临界电流密度甘氨酸掺杂MgB2超导体及制备方法,本发明专利技术的甘氨酸掺杂二硼化镁超导体的制备方法,将Mg粉和B粉和甘氨酸颗粒充分混合,得到MgB2+2~8%%Gly混合粉末;在2~10MPa的压力下压制成圆柱体薄片,之后放入高温差示扫描量热仪或管式烧结炉中进行烧结;以5~20℃/min的升温速率的连续加热到750~850℃烧结并保温0.5~1小时,然后以30~40℃/min的冷却速度降至室温。本发明专利技术在尽量不降低超导转变温度Tc的前提下,采用一种新的含碳化合物甘氨酸掺杂来实现C取代效应,从而提高临界电流密度Jc,获得高性能的MgB2超导体。克服了传统C掺杂降低低场下临界电流密度的弊端,使临界电流密度在整个磁场下都有了提高,获得了具有优越超导电性的超导体。

【技术实现步骤摘要】

本专利技术属于超导
,特别是涉及一种高临界电流密度甘氨酸掺杂超导体及制备方法,从而提高临界电流密度。
技术介绍
自1911年荷兰Leiden大学的H. K. 0nnes发现汞的超导电性之后,人们一直对这种现象进行着不懈的探索,提出了超导微观理论(BCS理论)。此后超导技术被人类应用并继续深入研究,不断获得了更高超导转变温度(T。)的物质。2001年1月,日本秋光纯宣布,他领导的研究小组发现了迄今为止临界温度最高的金属间化合物超导体——二硼化镁 (MgB2),其超导转变温度达39K,甚至超过了 BCS理论预言的极限。的超导电性被发现以后,世界范围内掀起了一股超导热潮,有关二硼化镁超导电性的研究报道迅速增加。科学家们不断加紧对MgB2的多晶样品、薄膜、线带材以及单晶的合成和制备技术进行研究,以求在超导电性的研究和应用上取得更大的突破。然而由于缺少磁通钉扎中心,MgB2纯物质的临界电流密度(J。)随着外加磁场的升高而迅速降低。为了提高高磁场下MgB2的临界电流密度值,研究者们开始尝试掺杂金属元素、碳基化合物等物质,试图用这种方式引入有效的磁通钉扎中心。由于掺杂后大量杂质相的产生或者影响了 MgB2的结晶度,大多数尝试是失败的。而这些尝试中,含碳化合物被认为是一组有效的掺杂物,因为C可以取代B进入MgB2晶格,从而引起晶格畸变,产生的缺陷可以作为钉扎中心,从而提高高场下的临界电流密度。这种取代可以通过晶格参数a 值的减小来证明。目前,关于单质C、B4C和SiC的掺杂已经有大量的研究。其中,SiC 被认为是一种最有效的掺杂物。SiC掺杂的样品在高磁场下表现出优越的超导性能,与MgB2 纯物质相比有了很大提高,相应的结果也已经被很多人报导过。但是,由于引入磁通钉扎而牺牲了晶粒间连接性,SiC掺杂对低场区域的J。值有一些不利的影响。后来,Zhou等人 研究了糖掺杂对MgB2的影响,除了能达到SiC掺杂样品的水平之外,还能够提高低磁场下的J。值。近年的研究也开始涉及到聚合物、聚合物-金属络合物或有机稀土金属盐的掺杂对MgB2的影响,渐渐显露出了有机物掺杂引入C取代效应的可能性。氨基酸是一种含碳有机物,而甘氨酸(Gly)是结构最简单的氨基酸。甘氨酸可以在Mg和B的固-固反应开始之前完全分解,产生的气体吸附在颗粒表面,从而影响烧结过程。例如,通过反应2Mg+0)2 = 2Mg0+C可以产生游离的C,进而发生C取代B进入 MgB2晶格,实现C掺杂。因此,本专利通过甘氨酸掺杂提高整个磁场下的临界电流密度的研究具有重要意义。
技术实现思路
本专利技术的目的是在尽量不降低超导转变温度T。的前提下,采用一种新的含碳化合物甘氨酸(Gly)掺杂来实现C取代效应,从而提高临界电流密度J。,获得高性能的Mg 超导体。本专利技术的技术方案如下一种甘氨酸掺杂二硼化镁超导体,原料为Mg粉、B粉按原子比1 2称量,再以Mg 粉和B粉质量为100%计,加入质量分数为2 8%的甘氨酸,得到MgB2+2 8% Gly样品。本专利技术的甘氨酸掺杂二硼化镁超导体的制备方法,将Mg粉和B粉和甘氨酸颗粒充分混合,得到MgB2+2 80Z0 0Z0 Gly混合粉末;在2 IOMPa的压力下压制成圆柱体薄片,之后放入高温差示扫描量热仪或管式烧结炉中进行烧结;以5 20°C /min的升温速率的连续加热到750 850°C烧结并保温0. 5 1小时,然后以30 40°C /min的冷却速度降至室温。采用一种新的含碳化合物甘氨酸(Gly)掺杂,克服了传统C掺杂降低低场下临界电流密度的弊端,使临界电流密度在整个磁场下都有了提高,获得了具有优越超导电性的超导体。附图说明图1 MgB2+2 8% Gly试样烧结过程的DTA曲线。图2 MgB2+2 8% Gly烧结试样的X-射线衍射结果。图3 MgB2+2 8% Gly烧结试样的微观组织。图4 MgB2+2 8% Gly烧结试样的磁矩随温度变化关系曲线。图5 MgB2+2 8% Gly烧结试样的临界电流密度随磁场变化曲线。具体实施例方式例 1将Mg粉、B粉按原子比1 2称量,再加入质量分数为2%的甘氨酸,并在玛瑙研钵中研磨30分钟使其充分混合,得到MgB2+2wt% Gly混合粉末。将混合粉末在2MPa的压力下压制成圆柱体薄片,之后放入高温差示扫描量热仪或管式烧结炉中进行烧结;以5°C / min的升温速率的连续加热到750°C烧结并保温0. 5小时,然后以30°C /min的冷却速度降至室温。例 2将Mg粉、B粉按原子比1 2称量,再加入质量分数为5%的甘氨酸,并在玛瑙研钵中研磨30分钟使其充分混合,得到MgB2+5Wt% Gly混合粉末。将混合粉末在5MPa的压力下压制成圆柱体薄片,之后放入高温差示扫描量热仪或管式烧结炉中进行烧结;以10°C / min的升温速率的连续加热到800°C烧结并保温0. 8小时,然后以35°C /min的冷却速度降至室温。例 3将Mg粉、B粉按原子比1 2称量,再加入质量分数为8%的甘氨酸,并在玛瑙研钵中研磨30分钟使其充分混合,得到MgB2+8wt% Gly混合粉末。将混合粉末在IOMPa的压力下压制成圆柱体薄片,之后放入高温差示扫描量热仪或管式烧结炉中进行烧结;以20°C / min的升温速率的连续加热到800°C烧结并保温1小时,然后以40°C /min的冷却速度降至室温。效果说明如下将Mg粉、B粉按原子比1 2称量,再掺杂质量分数为2 8%的甘氨酸颗粒,并在玛瑙研钵中研磨30分钟使其充分混合,得到MgB2+O 8) % Gly混合粉末。将混合粉末在2 IOMPa的压力下压制成圆柱体薄片,之后放入高温差示扫描量热仪或管式烧结炉中进行烧结;以5 20°C /min的升温速率的连续加热到750 850°C烧结并保温0. 5 1小时,然后以30 40°C/min的冷却速度降至室温。所得的差热分析曲线如图1所示。为了防止氧化,整个烧结过程在高纯氩气的保护性气氛下进行。接着对烧结试样进行物相分析和微观组织观察,图2和图3分别为MgB2+(2、5和8) % Gly试样的X-射线衍射结果和相对应的SEM微观组织图。由图2和图3,一方面可以看出在750 850°C烧结保温0. 5 1小时的试样中 MgB2已经成为主相,除MgO和剩余的Mg之外,产物中没有大量其他杂质相。C进入晶格引起 (002)晶面的特征峰不偏移,而(110)方向的特征峰偏移。另一方面,大多数晶粒为棱角分明的六方板状结构和光滑的表面,证明了生成了高质量的晶粒。三张照片中(001)晶面法线方向上的尺寸均小于lOOnm,并随着甘氨酸含量的增加,尺寸减小。小尺寸晶粒提供了更多的晶界钉扎作用,有利于临界电流密度的改善。图4为MgB2+^ 8)wt%Gly的烧结试样磁矩随温度变化关系曲线。从图中可以看出相比于MgB2纯物质而言,Tc值没有较大的降低,约为35. 5 37. 5K,因此本专利技术制备所得的甘氨酸掺杂的18化超导体基本维持了理论的超导转变温度值。根据图5所示的 MgB2+(2 8)wt% Gly烧结试样的临界电流密度与外加磁场之间的关系曲线,可以看出相比于MgB2纯物质而言,掺杂甘氨酸之后样品的临界电流密度在O 3T区间内有本文档来自技高网
...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:刘永长蔡奇马宗青余黎明高志明
申请(专利权)人:天津大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术