基于正交二维微焦准直的微孔测量装置与方法制造方法及图纸

技术编号:7474262 阅读:315 留言:0更新日期:2012-07-03 05:57
基于正交二维微焦准直的微孔测量装置与方法属于精密仪器制造和精密测试计量技术领域;支撑底座上装配两个支撑架,支撑架上装配横梁,支撑底座的凹槽内装配Z向运动部件,Z向测长装置装配在Z向运动部件的侧面,工作台固定在Z向运动部件的上方,Y向测长装置装配在工作台的内部,测量传感器固定吊挂在横梁的中间位置上,X向测长装置位于支撑底座的左侧位置,其平面反射镜固定装配在测量传感器的左侧,通过数据线依次将测量传感器、X、Y、Z向测长装置与计算机相连,该方法将工作台在指定测量方向的垂直方向上不断移动,反复测量得到的两触测点间的距离的最大值即为被测微孔直径,本发明专利技术具有传感零耦合、能进行方向探测、测力小等特点。

【技术实现步骤摘要】

本专利技术属于精密仪器制造及测量
,特别涉及一种。
技术介绍
随着航空航天工业、汽车工业、电子工业以及尖端工业等的不断发展,对于精密微小内腔构件的需求急剧增长。由于受到空间尺度的限制以及测量接触力的影响,微小内腔构件内尺寸的精密测量变得难以实现,尤其是测量深度难以提高,这些已然成为制约行业发展的“瓶颈”。为了实现更小的内尺寸测量、增加测量深度,最广泛使用的办法就是使用细长的探针深入微小内腔进行探测,通过瞄准发讯的方式测量不同深度上的微小内尺寸。因此,目前微小内尺寸的精密测量以坐标测量机结合具有纤细探针的瞄准发讯式探测系统为主,由于坐标测量机技术的发展已经比较成熟,可以提供精密的三维空间运动,因此瞄准触发式探针的探测方式成为微小内腔尺寸探测系统设计的关键。目前,微小内腔尺寸测量的主要手段包括以下几种方法1.天津大学的杨世民教授等人提出了一种弹性尺寸传递理论,并依据此理论研制了膜片式盲小孔测头。该测头以膜片为敏感元件,并运用电容传感器来检测膜片的形变,把测杆视为弹性体,通过精密标定,可以自动补偿弹性测杆的变形误差。将此测头安装在三坐标测量机上,可对各种方向的通盲小孔进行接触测量,测出其任意截面的尺寸和形状误差。 这种测头可以用于测量直径0. 3mm以上、深径比达30的盲孔,测量的线性范围士20μπι, 精度优于士 lym。这种方法测头与测杆难以进一步小型化,且测头的最大非线性误差为 0. 2 μ m,测量精度难以进一步提高。2.日本的T. Masuzawa等人利用硅加工的工艺制作了硅质微型探针,把探针作为阻抗元件接入电路中,提出一种振动扫描的方法进行孔径测量,把探针的机械变动量直接转变为电信号进行测量,能够对φ 100 μ m孔径实施测量,测量深度为0. 2mm。这种测量方法由于采用了外加振动源,测量数据的漂移较大,另外,它的探针测头末端几何形状为矩形, 测量孔时存在盲区,导致测量精度只能达到亚微米级。3.德国联邦物理技术研究院的H. Schwenke教授等人提出了一种微光珠散射成像法,实现了对探针测头位置信息的二维检测。该方法利用单光纤作为探针测杆,把微光珠粘接或者焊接到测杆末端,使光线耦合进入光纤内部传播到微光珠上形成散射,用一个面阵 CCD接收散射光形成敏感信号,实现了微力接触式测量。后来H. Schwenke教授等人拓展了这种方法,在测杆上粘接了一个微光珠,同时增加了一路对该微光珠的成像光路,这使得该探测系统具有了三维探测能力,测量标准球时得到的标准偏差为0. 2 μ m。据相关报道,此方法可以实现测量Φ151μπι的孔径,测量深度为1mm。这种方法在测量深孔过程中,由于微光珠散射角度较大,随着测量深度的增加,微光珠散射成像光斑的质量由于散射光线受到孔壁遮挡而逐渐降低,导致成像模糊,降低了测量精度,因此无法实施大深径比的高精度测量。44.哈尔滨工业大学谭久彬教授和崔继文博士等人提出一种基于双光纤耦合的探针结构,把两根光纤通过末端熔接球连接,熔接球作为测头,一根较长光纤引入光线,另外一根较短导出光线,克服了微光珠散射法测量深度的局限,可以实现对直径不小于0.01mm、 深径比不大于50 1的微深孔测量时的精确瞄准。这种方法耦合球中存在相干光干涉,导致获取的信号信噪比较低,影响测量精度进一步提升。5.美国国家标准技术研究院使用了单光纤测杆结合微光珠测头的探针,通过光学设计在二维方向上将光纤测杆成像放大35倍左右,用2个面阵CCD分辨接收二维方向上光纤测杆所成的像,然后对接收到的图像进行轮廓检测,从而监测光纤测杆的在测量过程中的微小移动,进而实现触发式测量,该探测系统的理论分辨力可以达到4nm,探测系统的探针测头直径为Φ75μπι,实验中测量了 ΦΙ^μπι的孔径,其扩展不确定度概算值达到了 70nm(k = 2,测量力为μΝ量级。这种方法探测分辨力高,测量精度高,使用的测头易于小型化,可以测量较大深径比的微孔。该方法的局限是成像单元对光纤测杆的微位移放大倍数较低(仅有35倍,必须通过图像算法进一步提高分辨力,探测光纤测杆的二维微位移必须使用两套成像系统,导致系统结构比较复杂,测量数据计算量比较大,这些因素导致探测系统的分辨力难以进一步提高,探测系统的实时性较差,系统构成比较复杂。6.瑞士联合计量办公室研发了一个新型的坐标测量机致力于小结构件纳米精度的可追迹的测量。该测量机采用了基于并联运动学原理的弯曲铰链结构的新型接触式探针,该设计可以减小移动质量并且确保全方向的低硬度,是一个具有三维空间结构探测能力的探针。这一传感结构的测量力低于0. 5mN,同时支持可更换的探针,探针测头的直径最小到ΦΙΟΟμπι。探测系统结合了一个由Wiilips CFT开发的高位置精度的平台,平台的位置精度为20nm。该测量系统测量重复性的标准偏差达到5nm,测量结果的不确定度为50nm。 该种方法结构设计复杂,同时要求测杆具有较高的刚度和硬度,否则难以实现有效的位移传感,这使得测杆结构难以进一步小型化,测量深径比同时受到制约,探测系统的分辨力难以进一步提高。7.哈尔滨工业大学谭久彬教授和王飞等人提出了一种基于单光纤探针测杆的一维微焦准直的测量方法,该方法利用单光纤探针侧测杆的超大曲率与微柱面透镜的结构特点组建了点光源一维微焦准直成像光路,通过测量成像亮条纹的能量中心的位置与条纹宽度,从而获得光纤探针测杆的二维位移量信息,若对该装置如下配置光纤探针测杆半径为 lOym,其折射率η = 1.7,像距1’ = 300mm,光电接收器像元尺寸为7 μ m,利用图像算法能够分辨0. 1个像元的变化,其理论分辨力可达0. 03nm。该方法所成像亮条纹的条纹宽度不易测量,同时在二维位移测量时,存在成像信息中的耦合问题,即成像亮条纹的能量中心的位置与条纹宽度的耦合问题。综上所述,目前微小内腔尺寸和二维坐标探测方法中,由于光纤制作的探针具有探针尺寸小、测量接触力小、测量深径比大、测量精度高的特点而获得了广泛关注,利用其特有的光学特性和机械特性通过多种方式实现了一定深度上的微小内尺寸的精密测量。现有测量手段主要存在的问题有1.探测系统的位移分辨力难以进一步提高。现存的探测系统的初级放大率较低, 导致了其整体放大率较低,难以实现其位移分辨力的进一步提高。美国国家标准技术研究院采用的探测方法的光学测杆的光学光路放大倍率仅有35倍,较低的初级放大倍率导致了其位移分辨力难以进一步提高。2.探测系统在测量方向上没有绝对“0”位置。现存的对微小内腔的探测手段主要通过面阵CCD所接收的二维图像来判断光纤测杆的位移,这种方法不具有绝对“0”位置,导致探测系统难以辨别测量要素的极性,也难以获得更高的测量重复性。3.探测系统实时性差,难以实现精密的在线测量。美国国家标准技术研究院采用的探测方法必须使用两路面阵CCD接收信号图像,并且由于光纤测杆成像光路放大倍率仅有35倍,必须使用较复杂的图像算法才能实现对光纤测杆位移的高分辨力监测,这导致测量系统需要处理的数据量大大增加,降低了探测系统的实时性能,难以实现微小内腔尺寸和二维坐标测量过程中瞄准发讯与启、止测量的同步性。4. 二维位移方向探测能力不足。哈尔滨工业大学提出的基于单光纤探针测杆的一维本文档来自技高网...

【技术保护点】

【技术特征摘要】

【专利技术属性】
技术研发人员:崔继文李俊英李磊杨福铃谭久彬
申请(专利权)人:哈尔滨工业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1
相关领域技术