一种制备NiO@SnO2@Zn2TiO4@TiO2同轴四层纳米电缆的方法技术

技术编号:6809442 阅读:478 留言:0更新日期:2012-04-11 18:40
本发明专利技术涉及一种制备NiO@SnO2@Zn2TiO4@TiO2同轴四层纳米电缆的方法,属于纳米材料制备技术领域。本发明专利技术包括三个步骤:(1)配制纺丝液。将四水醋酸镍和PVP加入到DMF中,形成芯层纺丝液,将五水四氯化锡和PVP加入到DMF中,形成第二层纺丝液,将二水醋酸锌和PVP加入到DMF中,形成第三层纺丝液,将钛酸丁酯、PVP和冰醋酸加入到乙醇中,形成壳层纺丝液。(2)制备[Ni(CH3COO)2+PVP]@[SnCl4+PVP]@[Zn(CH3COO)2+PVP]@[Ti(OC4H9)4+CH3COOH+PVP]前驱体复合电缆。采用同轴静电纺丝技术,电压19kV,固化距离26cm,室温25℃~30℃,相对湿度48%~55%。(3)制备NiO@SnO2@Zn2TiO4@TiO2同轴四层纳米电缆。将前驱体复合电缆进行热处理,升温速率为1℃/min,在1000℃保温8h,然后以1℃/min的速度降至200℃后自然冷却至室温,得到NiO(芯层)@SnO2(第二层)@Zn2TiO4(第三层)@TiO2(壳层)同轴四层纳米电缆,直径为225-415nm,长度>100μm。

【技术实现步骤摘要】

本专利技术涉及无机纳米材料制备
,具体说涉及一种制备NiOOSnO2OZn2TiO4Ig TiO2同轴四层纳米电缆的方法。
技术介绍
一维纳米结构材料的制备及性质研究是目前材料科学研究领域的前沿热点之一。 纳米电缆(Nanocables)由于其独特的性能、丰富的科学内涵、广阔的应用前景以及在未来纳米结构器件中占有的重要战略地位,近年来引起了人们的高度重视。同轴纳米电缆的研究起步于90年代中期,2000年以后发展迅猛,到目前为止,人们采用不同的合成方法,不同种类的物质已成功制备出了上百种同轴纳米电缆,如Fe/C、ai/ZnO、C/C、SiC/C、SiGaN/ SiOxNy以及三层结构的i^e-C-BN和α-Si3N4-Si-SiO2等。在过去的十多年中,人们在原有制备准一维纳米材料的基础上开发出许多制备同轴纳米电缆的方法,如水热法、溶胶-凝胶法、基于纳米线法、气相生长法、模板法等。继续探索新的合成技术,不断发展和完善同轴纳米电缆的制备科学,获得高质量的同轴纳米电缆,仍是目前同轴纳米电缆研究的主要方向。由于二氧化钛TW2和氧化镍NiO具有优异的光催化、高的光电转化效率、超强的化学稳定性以及很好的生物相容性等性能,因而在光催化分解有机物、光电池电极、珠光材料、组织器官、消毒抗菌等方面获得广泛应用。SnO2是一种广泛应用的半导体材料,用做釉料及搪瓷的不透明剂、催化剂和传感器材料。Si2TiO4是一种重要的无机功能材料,广泛用于微波介电陶瓷、固体氧化物燃料电池电极、气敏传感器、高温脱硫吸附剂、烷烃脱氢催化剂和光催化剂等。目前未见通过NiO、SnO2, Zn2TiO4和TiR构建NiOOSnO2Oai2TiO4OTiR同轴四层纳米电缆的报道,@表示芯壳结构,即电缆结构,此电缆为四层电缆结构,芯层@第二层@第三层@壳层,芯层为NiO,第二层为SnO2,第三层为Si2TiO4,壳层为TiO2,此纳米电缆具有特殊的结构,以期获得更广泛的应用。专利号为1975504的美国专利公开了一项有关静电纺丝方法(electrospirming) 的技术方案,该方法是制备连续的、具有宏观长度的微纳米纤维的一种有效方法,由 i^ormhals于1934年首先提出。这一方法主要用来制备高分子纳米纤维,其特征是使带电的高分子溶液或熔体在静电场中受静电力的牵引而由喷嘴喷出,投向对面的接收屏,从而实现拉丝,然后在常温下溶剂蒸发,或者熔体冷却到常温而固化,得到微纳米纤维。近10年来,在无机纤维制备
出现了采用静电纺丝方法制备无机化合物如氧化物纳米纤维的技术方案,所述的氧化物包括 Ti02、Zr02 J2O3 J2O3: RE3+(RE3+ = Eu3\Tb3\Er3\Yb3+/Er3+)、 NiO、Co3O4、Mn2O3、Mn3O4、CuO、SiO2、Al2O3、V2O5、ZnO> Nb2O5、MoO3、CeO2、LaMO3 (Μ = Fe、Cr、Mn、 Co、Ni、Al)、Y3A15012、La2Zr2O7等金属氧化物和金属复合氧化物。将静电纺丝技术进行改进,采用同轴喷丝头,将纺丝溶液分别注入到内管和外管中,当加高直流电压时,内外管中的溶液同时被电场力拉出来,固化后形成同轴纳米电缆,也即得到同轴双层纳米电缆,该技术即是同轴静电纺丝技术。王策等用该技术制备了二氧化硅@聚合物同轴纳米纤维(高等学校化学学报,2005,沈(5) :985-987),@表示芯壳结构,0前面的物质为芯层,@后面的物质为壳层,即为芯层@壳层结构,也即为双层电缆结构;董相廷等利用该技术制备了 TiO2O SiO2亚微米同轴电缆(化学学报,2007,65 03) :2675-2679), ZnOiSiO2同轴纳米电缆(无机化学学报,2010,沈(1),四-34)和Al203/Si02同轴超微电缆(硅酸盐学报,2009,37 (10) 1712-1717) ;Han, et al 采用该技术制备了 PU(core)/PC(Shell)复合纳米纤维(Polymer Composites, 2006,10 :381-386)。目前,未见利用同轴静电纺丝技术制备Ni0@Sn02@ai2Ti04@ TiO2同轴四层纳米电缆的相关报道。利用静电纺丝技术制备纳米材料时,原料的种类、高分子模板剂的分子量、纺丝液的组成、纺丝过程参数、热处理工艺和喷丝头的结构对最终产品的形貌和尺寸都有重要影响。本专利技术采用同轴静电纺丝技术,喷丝头由四个截平的不同直径的注射器针头套在一起组成的同轴四层喷丝头,以四水醋酸镍Ni (CH3COO)2 · 4H20、聚乙烯吡咯烷酮PVP和N,N- 二甲基甲酰胺DMF的混合液为芯层纺丝液,以五水四氯化锡SnCl4 ·5Η20、ΡνΡ和DMF的混合液为第二层纺丝液,以二水醋酸锌^i(CH3COO)2 · 2H20、PVP和DMF的混合液为第三层纺丝液, 以PVP、无水乙醇CH3CH20H、冰醋酸CH3COOH和钛酸丁酯Ti (OC4H9)4的混合液为壳层纺丝液, 控制纺丝液的粘度至关重要,在最佳的工艺条件下,获得@@ i前驱体复合电缆,即芯层 @ 第二层 @ 第三层 i壳层结构复合电缆,再经过高温热处理后,得到结构新颖的NiOOSnO2OZn2TiO4OTiA同轴四层纳米电缆。
技术实现思路

技术介绍
中的制备同轴纳米电缆的方法有水热法、溶胶-凝胶法、基于纳米线法、气相生长法、模板法等,
技术介绍
中的使用同轴静电纺丝技术制备的是无机物@无机物、无机物@高分子及高分子@高分子纳米电缆等同轴双层纳米电缆,所使用的原料、模板剂、溶剂、喷丝头的结构和最终的目标产物与本专利技术的方法不同。本专利技术使用同轴静电纺丝技术、采用同轴四层喷丝头制备了结构新颖的Nio@sno2@zn2Tio4@TiA同轴四层纳米电缆, 以NiO为芯层,直径为35-55nm ;第二层为SnO2,厚度为30-50nm ;第三层为Si2TiO4,厚度为 25-40nm,壳层为TiO2,厚度为40-90nm,同轴四层纳米电缆的直径为225-415nm,电缆长度> 100 μ m0本专利技术是这样实现的,首先制备出用于同轴静电纺丝技术的具有一定粘度的芯层、第二层、第三层和壳层纺丝液,控制纺丝液的粘度至关重要。采用同轴四层喷丝头、 应用同轴静电纺丝技术进行静电纺丝,在最佳的工艺条件下,获得@ i @前驱体复合电缆,即芯层 0 第二层@第三层@壳层结构复合电缆,经过高温热处理,PVP和CH3COOH氧化分解后挥发,芯层中的Ni (CH3COO) 2分解氧化生成NiO,构成所生成的纳米电缆的芯层,第二层中的SnCl4分解氧化生成SnO2,构成所生成的纳米电缆的第二层,第三层中的Si(CH3COO)2和壳层中与第三层接近的部分Ti (OC4H9)4在高温下发生氧化反应生成TSi2TiO4,构成了所生成的纳米电缆的第三层,壳层中其余的Ti(OC4H9)4分解氧化生成了 TiO2,构成了纳米电缆的壳层,这和以前报道的采用同轴静电纺丝技术制备同轴双层纳米电缆不同,最终得到结构新颖的 SnO2OZn2TiO4OTiA同轴四层纳米电缆。其步骤为(1)配制纺丝液纺丝液中高分子模板剂采用聚乙烯吡咯烷酮PVP,分子量为90本文档来自技高网
...

【技术保护点】
1.一种制备NiO@SnO2@Zn2TiO4@TiO2同轴四层纳米电缆的方法,其特征在于,使用同轴静电纺丝技术,喷丝头由四个截平的不同直径的注射器针头套在一起组成的同轴四层喷丝头,制备产物为NiO@SnO2@Zn2TiO4@TiO2同轴四层纳米电缆,即芯层@第二层@第三层@壳层结构,芯层为NiO,第二层为SnO2,第三层为Zn2TiO4,壳层为TiO2,其步骤为:(1)配制纺丝液高分子模板剂采用聚乙烯吡咯烷酮PVP,镍源使用四水醋酸镍Ni(CH3COO)2·4H2O,锡源使用五水四氯化锡SnCl4·5H2O,锌源使用二水醋酸锌Zn(CH3COO)2·2H2O,钛源使用钛酸丁酯Ti(OC4H9)4,溶剂采用无水乙醇CH3CH2OH和N,N-二甲基甲酰胺DMF,冰醋酸CH3COOH为添加剂,将Ni(CH3COO)2·4H2O和PVP加入到DMF中,室温下磁力搅拌6h,并静置3h,即形成芯层纺丝液,芯层纺丝液中各物质的质量百分数为:Ni(CH3COO)2·4H2O为7%,PVP为11%,DMF为82%,将SnCl4·5H2O和PVP加入到DMF中,室温下磁力搅拌6h,并静置3h,即形成第二层纺丝液,第二层纺丝液中各物质的质量百分数为:SnCl4·5H2O为8%,PVP为11%,DMF为81%,将Zn(CH3COO)2·2H2O和PVP加入到DMF中,室温下磁力搅拌6h,并静置3h,即形成第三层纺丝液,第三层纺丝液中各物质的质量百分数为:Zn(CH3COO)2·2H2O为9%,PVP为12%,DMF为79%,将Ti(OC4H9)4、PVP和CH3COOH加入到CH3CH2OH中,室温下磁力搅拌6h,并静置3h,即形成壳层纺丝液,壳层纺丝液中各物质的质量百分数为:Ti(OC4H9)4为20%,PVP为8%,CH3COOH为18%,CH3CH2OH为54%;(2)制备[Ni(CH3COO)2+PVP]@[SnCl4+PVP]@[Zn(CH3COO)2+PVP]@[Ti(OC4H9)4+CH3COOH+PVP]前驱体复合电缆喷丝头由四个截平的不同直径的注射器针头套在一起组成的同轴四层喷丝头,芯层喷头为截平后的5#不锈钢针头,外径为0.5mm,内径为0.232mm,第二层喷头为截平后的12#不锈钢针头,外径为1.2mm,内径为0.790mm,第三层喷头为截平后的20#不锈钢针头,外径为2.0mm,内径为1.7mm,壳层喷头为截平后的兽用注射器针头,外径为3.6mm,内径为2.0mm,将配制好的芯层纺丝液加入到内管中,第二层纺丝液加入到第二层管中,第三层纺丝液加入到第三层管中,壳层纺丝液加入到外管中,调节芯层喷头、第二层喷头、第三层喷头和壳层喷头的间隙以保证各层纺丝液顺利地流出,采用同轴静电纺丝技术,采用竖喷方式,喷头与水平面垂直,施加电压为19kV,喷头到接收屏铁丝网的固化距离为26cm,室内温度25℃-30℃,相对湿度为48%-55%,随着溶剂的挥发,在作为负极的铁丝网上就可以收集到[Ni(CH3COO)2+PVP]@[SnCl4+PVP]@[Zn(CH3COO)2+PVP]@[Ti(OC4H9)4+CH3COOH+PVP]前驱体复合电缆;(3)制备NiO@SnO2@Zn2TiO4@TiO2同轴四层纳米电缆对所获得的[Ni(CH3COO)2+PVP]@[SnCl4+PVP][Zn(CH3COO)2+PVP]@[Ti(OC4H9)4+CH3COOH+PVP]前驱体复合电缆进行热处理,升温速率为1℃/min,在1000℃保温8h,然后以1℃/min的速度降至200℃后自然冷却至室温,至此得到NiO@SnO2@Zn2TiO4@TiO2同轴四层纳米电缆。...

【技术特征摘要】

【专利技术属性】
技术研发人员:董相廷宋超王进贤于文生刘桂霞徐佳
申请(专利权)人:长春理工大学
类型:发明
国别省市:82

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1