一种基于杂草密度检测的田间草害预警方法技术

技术编号:39402171 阅读:25 留言:0更新日期:2023-11-19 15:54
本发明专利技术涉及一种基于杂草密度检测的田间草害预警方法:首先获取插秧机的作业定位坐标,并构建插秧机作业轨迹线;接着结合插秧机的插秧机具的机械特性,以此来定位理论秧苗坐标位置;然后结合实际秧苗地理坐标的间距,以理论秧苗地理坐标为原点,以预设距离为半径构建理论秧苗圆圈域;接着利用无人机采集插秧后的农田图像,构建深度学习目标检测模型;构建计算映射模型,将理论秧苗圆圈域映射至农田图像中;通过构建植株数量统计算法模型,在农田图像中对目标检测算法检测到的植株进行数量统计计算;对采集的理论秧苗圆圈域外的农田图像进行目标检测处理及植株数量统计,设定草害预警数量阈值,超出该阈值则代表草害严重,即需要进行预警

【技术实现步骤摘要】
一种基于杂草密度检测的田间草害预警方法


[0001]本专利技术涉及农业领域,具体涉及一种基于杂草密度检测的田间草害预警方法


技术介绍

[0002]茶叶

花生

水稻等农作物的生长过程中,种植人员为农作物的生长提供了较为适宜的营养

水分等生长环境,在这样的生长环境下,往往也容易滋生杂草,杂草会遮挡农作物的阳光

抢夺农作物养分,侵占地上和地下空间,导致农作物减产,最终影响经济效益

所以农作物生长过程中往往需要进行除草,而除草首先需要进行杂草检测

传统的杂草检测方法主要是人工巡查,然而这种方式存在费时费力

效率低下

漏检率较高的问题,因此亟需一种新的高自动化

高效率

高准确率的杂草检测方法

[0003]关于杂草的自动化检测这块,申请公布号为
CN115546639A
的专利技术专利申请公开了“一种基于改进的<本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.
一种基于杂草密度检测的田间草害预警方法,其特征在于,包括以下步骤:
S1、
获取插秧机的作业定位坐标,并构建插秧机作业轨迹线;
S2、
结合插秧机的插秧机具的机械特性,以此来定位理论秧苗坐标位置;
S3、
结合实际秧苗地理坐标的间距,以理论秧苗地理坐标为原点,以预设距离为半径构建理论秧苗圆圈域;
S4、
利用无人机采集插秧后的农田图像;
S5、
通过采集到的农田图像来构建用于识别和定位植株的深度学习目标检测模型;
S6、
构建计算映射模型,将理论秧苗圆圈域映射至无人机采集的农田图像中;
S7、
构建植株数量统计算法模型,在农田图像中对目标检测算法检测到的植株进行数量统计计算;
S8、
对采集的理论秧苗圆圈域外的农田图像进行目标检测处理及植株数量统计,设定草害预警数量阈值,超出该阈值则代表草害严重,即需要进行预警
。2.
根据权利要求1所述的基于杂草密度检测的田间草害预警方法,其特征在于,在步骤
S1
中,通过在插秧机的顶部安装
RTK
天线和在其内部安装
RTK
接收机,记录插秧机作业时的实时定位坐标,并将记录的插秧机实时定位坐标用平滑曲线连接,以此来构建插秧机作业轨迹线
。3.
根据权利要求2所述的基于杂草密度检测的田间草害预警方法,其特征在于,在步骤
S2
中,通过判定插秧机作业时插秧机具的机械特性,所述机械特性为秧苗之间的插秧间距;通过确定相邻两株理论秧苗之间的秧苗间距,从而确定理论秧苗的位置坐标
。4.
根据权利要求3所述的基于杂草密度检测的田间草害预警方法,其特征在于,在步骤
S3
中,以所述的理论秧苗位置坐标为原点,设定不超过
20
厘米的预设距离为半径,构建秧苗理论圆圈域,该秧苗理论圆圈域内的植株均视为秧苗
。5.
根据权利要求4所述的基于杂草密度检测的田间草害预警方法,其特征在于,在步骤
S4
中,利用无人机采集插秧后的农田图像,所采用的无人机应为带有
RTK
定位功能的高精度无人机;该无人机的拍摄像素及拍摄高度需要达到拍摄要求且能够记录拍摄...

【专利技术属性】
技术研发人员:吴双龙马鑫港王海林齐龙刘闯唐震宇陈钊国严翔宇
申请(专利权)人:华南农业大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1