无人机的识别方法、装置及存储介质制造方法及图纸

技术编号:38481405 阅读:32 留言:0更新日期:2023-08-15 16:59
本发明专利技术公开了一种无人机的识别方法、装置及存储介质,涉及图像识别技术领域。方法包括对无人机的第一红外图像进行多层离散平稳小波变换,得到多个尺度低频子带图像和高频子带图像;对各尺度高频子带图像和低频子带图像信号增强处理,基于处理后的各尺度高频子带图像和低频子带图像进行逆平稳小波变换,得到第二红外图像;将第二红外图像转换为灰度图像后轮廓提取;将无人机的轮廓图像输入第一识别模型,得到为各类无人机的第一置信度;将各个部位的亮度平均值输入第二识别模型,得到为各类无人机的第二置信度;基于第一置信度和第二置信度,确定出无人机的类型。本发明专利技术公开的方法、装置及存储介质可准确识别出无人机的型号。装置及存储介质可准确识别出无人机的型号。装置及存储介质可准确识别出无人机的型号。

【技术实现步骤摘要】
无人机的识别方法、装置及存储介质


[0001]本专利技术属于图像识别
,具体涉及一种无人机的识别方法、装置及存储介质。

技术介绍

[0002]无人驾驶飞机简称“无人机”,英文缩写为“UAV”,是利用无线电遥控设备和自备的程序控制装置操纵的不载人飞机,或者由车载计算机完全地或间歇地自主地操作。
[0003]由于无人机具有体积小、造价低、使用方便等优点常被用于军事对抗,而不同类型的无人机其功能也存在一定差异,因此在军事对抗过程中,对对方无人机类型的识别也显得十分有必要。而由于无人机的体积和外界天气因素的影响,所获取到的无人机图像往往并不清晰,从而导致常常无法准确识别出图像中无人机的型号。
[0004]因此,如何提供一种有效的方案以便准确识别出无人机的型号,已成为现有技术中一亟待解决的难题。

技术实现思路

[0005]本专利技术的目的是提供一种无人机的识别方法、装置及存储介质,用以解决现有技术中存在的上述问题。
[0006]为了实现上述目的,本专利技术采用以下技术方案:第一方面,本专利技术提供了一种无人机本文档来自技高网...

【技术保护点】

【技术特征摘要】
1.一种无人机的识别方法,其特征在于,包括:获取包含待识别无人机的第一红外图像;对所述第一红外图像进行多层离散平稳小波变换,得到多个尺度的低频子带图像和多个尺度的高频子带图像;对各尺度高频子带图像进行信号增强处理,以增强各尺度高频子带图像中的有效点以及衰减各尺度高频子带图像中的噪声点;对各尺度低频子带图像进行信号增强处理,以增强各尺度低频子带图像中的有效点以及衰减各尺度低频子带图像中的噪声点;基于信号增强处理后的各尺度高频子带图像和信号增强处理后的各尺度低频子带图像进行逆平稳小波变换,得到重构的第二红外图像;将所述第二红外图像转换为灰度图像后进行轮廓提取,得到所述待识别无人机的轮廓图像;基于所述待识别无人机的轮廓图像,识别出所述待识别无人机的各个部位;将所述待识别无人机的轮廓图像输入预先训练的第一识别模型,得到所述待识别无人机为各类无人机的第一置信度;将所述待识别无人机的各个部位的亮度平均值输入预先训练的第二识别模型,得到所述待识别无人机为各类无人机的第二置信度;基于所述待识别无人机为各类无人机的第一置信度和第二置信度,确定出所述待识别无人机的类型。2.根据权利要求1所述的无人机的识别方法,其特征在于,所述对各尺度高频子带图像进行信号增强处理,以增强各尺度高频子带图像中的有效点以及衰减各尺度高频子带图像中的噪声点,包括:确定出用于信号与噪声分割的第一分割阈值;基于所述第一分割阈值对所述各尺度高频子带图像中的高频小波系数进行分割,以识别出各尺度高频子带图像中有效点和噪声点;采用不同的增强系数对各尺度高频子带图像中的每个像素点的高频小波系数幅值进行增强处理。3.根据权利要求2所述的无人机的识别方法,其特征在于,采用如下公式对各尺度高频子带图像中的每个像素点的高频小波系数幅值进行增强处理:其中,T为第一分割阈值,和分别为增强系数且>1,0<<1,为第K个方向中第j个尺度的高频子带图像中像素坐标为(x,y)的像素点在增强处理前的高频小波系数幅值,为第K个方向中第j个尺度的高频子带图像中像素坐标为(x,y)的像素点在增强处理后的高频小波系数幅值。4.根据权利要求1所述的无人机的识别方法,其特征在于,所述对各尺度低频子带图像进行信号增强处理,以增强各尺度低频子带图像中的有效点以及衰减各尺度低频子带图像
中的噪声点,包括:计算各尺度低频子带图像中像素点的低频小波系数幅值的平均值;基于各尺度低频子带图像中像素点的低频小波系数幅值的平均值识别出各尺度低频子带图像中的背景区域和目标区域;将各尺度低频子带图像中的背景区域所对应低频小波系数幅值的平均值,作为对应尺度低频子带图像所对应的第二分割阈值;基于各尺度低频子带图像所对应的第二分割阈值,对各尺度低频子带图像中的低频小波系数进行分割,以识别出各尺度低频子带图像中有效点和噪声点;基于各尺度低频子带图像中所有低频小波系数幅值的绝对值,确定出各尺度低频子带图像所对应的增强系数;基于各尺度低频子带图像所对应的增强系数对各尺度低频子带图像中每个像素点的低频小波系数幅值进行增...

【专利技术属性】
技术研发人员:李国庆刘兵刘家锟陈文枫
申请(专利权)人:成都庆龙航空科技有限公司
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1