单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法技术

技术编号:33638544 阅读:8 留言:0更新日期:2022-06-02 01:55
本发明专利技术涉及单晶高温合金技术领域,具体为单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法,包括以下步骤:步骤一,型芯制备:采用设计的陶瓷型芯模具,压制陶瓷型芯;步骤二,蜡模压制:在外形模具中压制成蜡模,并将蜡模组合成为模组。本发明专利技术可以定量评价单晶高温合金的扰流柱再结晶倾向性,为合金选材提供依据。针对不同合金,发现的再结晶数量越多、再结晶出现的扰流注直径越大、圆角半径越大,则这个合金的扰流柱再结晶倾向性越大。个合金的扰流柱再结晶倾向性越大。个合金的扰流柱再结晶倾向性越大。

【技术实现步骤摘要】
单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法


[0001]本专利技术涉及单晶高温合金
,具体涉及单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法。

技术介绍

[0002]镍基单晶高温合金凭借着优异的高温性能广泛应用于先进航空燃气涡轮叶片。单晶高温合金是目前高推重比、高功重比航空发动机涡轮工作叶片优先考虑选用的材料,甚至可以说单晶叶片是发动机先进程度的重要标志,也是一个国家航空工业水平的显著标志。单晶叶片工作条件极其恶劣,承受着复杂的气动、热和机械载荷等,为进一步提高叶片的承温能力,往往采用复杂型腔空心的高效冷却结构,单晶高温合金作为一种新型应用的叶片材料,复杂结构也将给工程应用上带来材料与工艺、结构等匹配性问题。
[0003]随着航空发动机涡轮叶片的工作环境温度越来越高,如何确保涡轮叶片安全可靠的工作是一个十分关键的问题。空心叶片的冷却原理是由航空发动机吸入的冷空气从涡轮叶片的底部流入叶片的内部空腔,沿叶片内部冷却流道,从下而上对空心叶片的内表面实施有效的降温冷却。冷却气流一部分通过叶缘前沿的冲击孔,以冲击冷却的方式对叶缘前沿的内表面降温冷却,另外一部分气体通过空心叶片排气边附近的扰流柱,被干扰而减缓流速使其与叶片强制换热后从排气边尾部流出,最后一部分冷却气体经过叶片平台及叶身的气膜孔流出,在叶片外表面形成一层薄壁的冷气隔膜,从而使叶片整体得到有效的保护冷却。近些年针对涡轮叶片的冷却技术开展了一系列的研究,获取了冷却效率与扰流柱间的排布关系。
[0004]单晶高温合金由于不含或少含晶界强化元素,对再结晶十分敏感,一旦单晶叶片在某区域发生再结晶,裂纹易在结晶与基体之间的界面上萌生,并沿着晶界扩展,并导致断裂,造成重大的经济损失。许多研究表明,再结晶的存在严重影响单晶叶片的服役性能,尤其是对高温疲劳和持久性能影响大。单晶空心叶片工作温度越高,再结晶对其影响也越大。
[0005]因此,目前在一些设计工作温度很高的先进发动机上,单晶涡轮空心叶片的关键部位要求十分苛刻,几乎是不允许再结晶的存在。表面再结晶可以通过目视检验完成,但是内腔扰流柱再结晶检验只能通过解剖破坏后才能发现,因此要保证内腔结构不会形成再结晶十分关键。

技术实现思路

[0006]针对现有技术的缺陷,本专利技术的目的是提供单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法。
[0007]本专利技术解决技术问题采用如下技术方案:本专利技术提供了单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法,包括以下步骤:步骤一,型芯制备:采用设计的陶瓷型芯模具,压制陶瓷型芯;
步骤二,蜡模压制:在外形模具中压制成蜡模,并将蜡模组合成为模组;步骤三,型壳制备:将模组上涂挂耐火材料,经过干燥、烧结后得到壳型,壳型为多层结构,壳型涂挂完成后进行脱蜡、烧结处理;步骤四,定向凝固:使用单晶炉浇注不同的单晶高温合金,制备出单晶高温合金铸件,并经切割后,进行脱壳、脱芯处理;步骤五,真空热处理:按照不同合金的热处理规范,将单晶高温合金铸件进行真空热处理;步骤六,再结晶检验:将铸件沿扰流柱高度方向解剖后,进行宏观腐蚀,目检检验再结晶。
[0008]优选地,所述陶瓷型芯为厚度2mm的板状结构,并均匀分布16组通孔,用于形成铸件的扰流柱结构。
[0009]优选地,所述16组通孔中每组由5个相同直径的通孔组成,5个通孔孔径相同,过渡圆角半径相同。
[0010]优选地,所述每组孔的具体排布规则为:中心位置一个通孔,外侧以中心孔圆心为中心均布4个通孔;外侧4个孔和中心孔的最小距离均为孔径;横向4组通孔,每组孔径不同,分别为1、1.5、2、2.5mm,过渡圆角相同;纵向4组通孔,孔径相同,每组通孔的过渡圆角半径不同,分别为0.1、0.3、0.5、0.7mm。
[0011]优选地,所述步骤二中蜡模的壁厚为1

3mm。
[0012]优选地,所述步骤四定向凝固中具体的工艺步骤为:将制备好的模壳放入单晶炉中,熔化及精炼真空压强<4Pa;上加热器温度为1500

1520℃;下加热器温度为1520

1540℃;合金在1550

1560℃精炼后从浇注系统的浇口杯浇入壳型中,抽拉速率为3

4mm/min,完毕后破真空后冷却。
[0013]优选地,所述步骤五真空热处理中热处理制度为:加热至1315

1320℃,保温4h,充氩气冷却,当冷到500℃或以下,铸件冷却速度不低于40℃/min。
[0014]优选地,所述步骤六中宏观腐蚀采用盐酸腐蚀剂或三氯化铁腐蚀剂中的一种对铸件进行宏观腐蚀。
[0015]优选地,所述壳型多层结构为6~8层;所述合金包括DD6合金或DD419合金。
[0016]优选地,所述耐火材料为白钢玉粉和硅溶胶混合而成,白刚玉粉和硅溶胶的重量比为(2~3):1。
[0017]与现有技术相比,本专利技术具有如下的有益效果:1、本专利技术可以定量评价单晶高温合金的扰流柱再结晶倾向性,为合金选材提供依据。针对不同合金,发现的再结晶数量越多、再结晶出现的扰流注直径越大、圆角半径越大,则这个合金的扰流柱再结晶倾向性越大。
[0018]2、本专利技术可以实现对单晶空心涡轮叶片扰流柱结构的设计合理性进行评价。对于特定材料而言,通过此实验,可以得到叶片扰流注结构设计的门槛值,避免由于再结晶报废而使得结构反复修改。
[0019]3、本专利技术所设计的单晶铸件结构简单,易于铸造,能够快速准确的评价单晶高温合金扰流柱结构再结晶倾向性;该方法成本低,易于推广应用。
附图说明
[0020]图1是本专利技术的示意图;图2是本专利技术陶瓷型芯示意图。
具体实施方式
[0021] 下面结合具体实施例,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。
[0022]实施例1本实施例中,本实施例的单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法,包括以下步骤:步骤一,型芯制备:采用设计的陶瓷型芯模具,压制陶瓷型芯;步骤二,蜡模压制:在外形模具中压制成蜡模,并将蜡模组合成为模组;步骤三,型壳制备:将模组上涂挂耐火材料,经过干燥、烧结后得到壳型,壳型为6层半的多层结构,浆料为硅溶胶和白钢玉粉混合而成,白刚玉粉和硅溶胶的重量比为2:1,撒砂材料为白钢玉粉,壳型涂挂完成后进行脱蜡、烧结处理;步骤四,定向凝固:使用单晶炉浇注不同的单晶高温合金,制备出单晶高温合金铸件,并经切割后,进行脱壳、脱芯处理;步骤五,真空热处理:按照不同合金的热处理规范,将单晶高温合金铸件进行真空热处理;步骤六,再结晶检验:将铸件沿扰流柱高度方向解剖后,进行宏观腐蚀,目检检验再结晶。
[0023]本实施例按照设计的模具,压制陶瓷型芯,如图1所示,陶本文档来自技高网
...

【技术保护点】

【技术特征摘要】
1.单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法,其特征在于,包括以下步骤:步骤一,型芯制备:采用设计的陶瓷型芯模具,压制陶瓷型芯;步骤二,蜡模压制:在外形模具中压制成蜡模,并将蜡模组合成为模组;步骤三,型壳制备:将模组上涂挂耐火材料,经过干燥、烧结后得到壳型,壳型为多层结构,壳型涂挂完成后进行脱蜡、烧结处理;步骤四,定向凝固:使用单晶炉浇注不同的单晶高温合金,制备出单晶高温合金铸件,并经切割后,进行脱壳、脱芯处理;步骤五,真空热处理:按照不同合金的热处理规范,将单晶高温合金铸件进行真空热处理;步骤六,再结晶检验:将铸件沿扰流柱高度方向解剖后,进行宏观腐蚀,目检检验再结晶。2.根据权利要求2所述的单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法,其特征在于,所述陶瓷型芯为厚度2mm的板状结构,并均匀分布16组通孔,用于形成铸件的扰流柱结构。3.根据权利要求2所述的单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法,其特征在于,所述16组通孔中每组由5个相同直径的通孔组成,5个通孔孔径相同,过渡圆角半径相同。4.根据权利要求3所述的单晶高温合金空心叶片扰流柱再结晶形成倾向性评价方法,其特征在于,所述每组孔的具体排布规则为:中心位置一个通孔,外侧以中心孔圆心为中心均布4个通孔;外侧4个孔和中心孔的最小距离均为孔径;横向4组通孔,每组孔径不同,分别为1、1.5、2、2.5mm,过渡圆角相同;纵向4组通孔,孔径相同,每组通孔的过渡圆角半径不同,分别为0.1、0.3、0.5、0.7mm。5.根据权利要求1所述的单晶高温合金空心叶片扰流柱再...

【专利技术属性】
技术研发人员:刘维维郭媛媛张剑郑素杰
申请(专利权)人:中国航发北京航空材料研究院
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1