电介透镜、电介透镜器件、电介透镜的设计方法、电介透镜的制造方法和收发装置制造方法及图纸

技术编号:3269305 阅读:154 留言:0更新日期:2012-04-11 18:40
为设计电介透镜,第一步确定预期的孔径表面分布,第二步将电能守恒定律、后表面一侧的菲涅耳定律以及代表光路长度规则的公式转换为联立方程,并根据从电介透镜的焦点到电介透镜后表面的主光线的方位角θ计算电介透镜的表面和后表面的形状,第三步,在电介透镜表面上的坐标达到预定的约束厚度位置时,使上述表示光路长度规则公式中的光路长度减小波长的整数倍。使上述方位角θ从其起始值依次变化,并重复第二步和第三步。于是,在构成电介透镜时使天线性能保持在良好状态的同时,通过分区,可实现尺寸减小和分区量化。

【技术实现步骤摘要】
【国外来华专利技术】
本专利技术涉及微波段或毫米波段用的电介透镜天线的电介透镜、电介透镜器件、电介透镜的设计方法、电介透镜的制造方法,以及使用电介透镜或电介透镜器件的收发装置。
技术介绍
微波段或毫米波段用的电介透镜天线,其作用在于折射从主发射器阱广角辐射出的电波;在透镜前方的虚拟孔径表面上对齐电波的相位;以及在所述孔径表面上产生磁场的幅度分布。于是,可使电波沿一定方向尖锐地发射出去。这种电介透镜天线与光学中所用的透镜类似,它们之间的最大差别是,不仅必须简单地对齐相位,而且还要产生一个幅度分布(孔径表面分布)。这是因为,在远方的位置处,天线的特性(方向性)具有一种可用傅里叶变换代表的关系,因此,为了获得所预期的方向性,必须调节孔径表面分布阱。因此,对于电介天线而言,重要的是在孔径表面上对齐电波的相位,并且产生所预期的孔径表面分布阱。为了在孔径表面上对齐所述相位,需要利用光线的一些性质,其中,即使从主发射器发射的光线抵达孔径表面的距离(光路长度)改变波长的整数倍,对应的光线也能互相强化,借此,可以切割透镜的形状。这称为分区(zoning)。光学领域中众所周知的菲涅耳(Fresnell)透镜也是基于与此相同的原理,但在光学中不存在孔径表面分布的概念。电介透镜天线包括一个主发射器,如喇叭透镜和一个电介透镜。一般情况下,电介透镜天线的电介透镜部分的重量和体积之比是很高的,而且,为了减小整个设备的尺寸和重量,希望减小电介透镜的尺寸和重量。至于使电介透镜变薄和变轻的方法,可以采用上述分区技术。例如,非专利文献1公开的技术是,其中的孔径表面分布是预先设计的,在这之后再对于后表面一侧进行分区,由此可使分区后的孔径表面分布大体上等于分区前的孔径表面分布。图23表示经受分区的电介透镜的一个实例。在该附图中,左侧是面对主发射器的一侧(后表面一侧),右侧是在主发射器对面的一侧(表面一侧)。图26是说明非专利文献1电介透镜的设计方法的流程图。首先,确定预期的孔径表面分布(S11)。确定透镜的中心位置,以此用作计算的开始点(S12)。使用数字计算获得电能守恒定律(有关表面(前表面)的斯涅耳(Snell)定律)的解,以及表示光路长度规律的公式(S13)。对于最远到透镜圆周的边缘进行计算,从而完成尚未经过分区的透镜形状的计算(S14)。然后,在适当的后表面位置按波长沿主光线改变光路长度,并且主要改变电介透镜的后表面(分区)(S15)。使整个电介透镜经受步骤15的这种处理(S16→S15→如此等等)。另外,采用专利文献1公开的技术,其中,为了抑制由于分区引起的折射所致产生的损耗,要使表面一侧成为上凸形状,并使后表面一侧经历分区。图24是说明这种技术的一种举例的剖面图。由于要在电介部分1(面对主发射器20一侧)的后表面一侧上进行分区,电介透镜10要形成一个下凹部分2。再有,采用非专利文献2,在1984年就引入了关于透镜的分区技术,从这时开始,分区技术就已成为公知的。例如,图25(A)中就是一个实例,其中,把电介透镜的表面一侧取为平面,使后表面一侧上的上凸形状经过分区。图25(B)中的举例,其中,把电介透镜的后表面一侧取为上凸形状,而使表面一侧上的平面经受分区。再有,在图25(C)中的又一个例子中,把电介透镜的后表面一侧取为平面,而使表面一侧的上凸形状经受分区。非专利文献1J.J.Lee,“电介透镜成形及慧差校正分区,第1部分分析”,IEEE关于天线和传播的学报,1983年1月,第AP-31卷,第1期,pp.221。非专利文献2Richard C.Johnson和Henry Jasik,“天线工程手册,第二版”,McGraw-Hill(1984) 专利文献1日本未审专利申请公开特开平9-223924
技术实现思路
为了改进天线的性质,重要的是要优化孔径表面分布。对于非专利文献1,使优化分区之前的透镜和分区之后的透镜形成的孔径表面分布相等,并且主要是使后表面一侧经受分区处理。然而,在这种情况下,虽然能够实现重量的减轻,但利用表面一侧上凸的透镜并不能实现厚度的减小。另外,当试图通过使表面一侧接受分区处理以使表面一侧为上凸形状的透镜的厚度减小时,传统技术只是简单地切断前面一侧,比如利用菲涅耳透镜作为光学透镜,或者如非专利文献2的图25(C)所示那样,从而产生在分区前、后孔径表面分布发生变化的问题。再有,一旦使透镜的前面一侧被分区,如果像用作光学透镜的菲涅耳透镜那样简单地垂直切断所述透镜,或者如果没有如图25(C)所示的清晰的导向线,则由于衍射效应而导致磁场紊乱,使天线性质变差。就专利文献1而论,透镜形状与主光线一起发生变化,在这种情况下,可以防止因折射所引起的损耗。但这会在电介透镜上产生一个尖锐的部分,在这个部分上重新发生衍射。有关如何选择分区位置,在许多情况下,可以简单地根据按相等间隔确定的位置或者根据消除有如非专利文献1中所述慧差的条件进行选择。但在这种情况下,并未将衍射效应引起的磁场扰动的影响完全考虑在内。此有,对于经受传统分区处理的电介透镜而论,在台阶表面和折射表面之间产生一个下凹部分,有如陡峭的山谷,尘土、雨水和雪花就容易粘结到或者被收集在这个下凹部分内。具体来说,由于包含湿气的雨、雪、尘土的介电常数较大,上面所述的下凹部分中的这种积累就可能会引起天线特性极度变差的问题。本专利技术的目的在于提供一种电介透镜器件、一种电介透镜的设计方法、一种电介透镜的制造方法,以及一种使用电介透镜或电介透镜器件的收发装置,其中,消除了上述各种不同的问题,并且可以在电介透镜天线的结构中适当地保持天线的特性;通过分区减小电介透镜的尺寸和重量,并且消除所述尘土、雨水和雪花的粘结问题。为了实现上述目的,本专利技术的特征如下(1)按照本专利技术的设计方法,其特征在于,所述设计方法包括第一步,确定所预期的孔径表面分布;第二步,将面对电介透镜第一主发射器一侧的后表面侧的斯涅耳定律、电能守恒定律和代表光路长度规则的公式转换为联立方程,并根据从电介透镜的焦点到电介透镜后表面的主光线的方位角θ计算在主发射器和上述后表面对面的前侧的表面形状;第三步,当在电介透镜表面上的坐标到达预定的约束厚度位置时,使上述表示光路长度规则的公式中的光路长度减小空气中波长的整数倍;其中,使主光线的方位角θ从它的起始值开始变化,并重复上述第二步和第三步。按照这种电介透镜设计方法,通过直接计算这些内容,同时存储孔径表面分布,可获得电介透镜的表面和后表面,因而能严格地存储所预期的孔径表面分布,借此获得预期的电介透镜天线特性。应予说明的是,采用本专利技术的电介透镜传递的波比如为毫米段电磁波,但是可以按照与对光的处理相同的方式处理电介透镜处的折射作用,所说的光是指具有短波长的电磁波,因此,在本申请中,把在右后方的方向沿电介透镜的中心通过的轴称为“光轴”,把在预定方向笔直入射的电磁波称为“主光线”,而把电磁波的传播路线称为“光路”。(2)另外,本专利技术电介透镜的设计方法的特征在于,所述设计方法还包括第四步,通过使上述光路长度减小波长的整数倍,使上述台阶表面向焦点方向而不是向电介透镜的厚度方向倾斜,然后重复第二步和第三步,直到上述方位角θ达到最终值为止,由此,可以校正台阶表面的倾斜角,所述台阶表面的倾斜角是在电介透镜的主发射器对面的前本文档来自技高网
...

【技术保护点】
一种电介透镜的设计方法,所述方法包括如下步骤:第一步,确定所预期的孔径表面分布; 第二步,将面对电介透镜的第一主发射器一侧的后表面侧的菲涅耳定律、电能守恒定律和代表光路长度规则的公式转换为联立方程,并根据从电介透镜的焦点到电介透镜后表面的主光线的方位角θ计算在电介透镜的主发射器和上说后表面对面的前侧的表面的形状;第三步,当在电介透镜表面上的坐标到达预定的约束厚度位置时,使上述表示光路长度规则的公式中的光路长度减小空气中波长的整数倍;其中,使主光线的方位角θ从它的起始值开始变化,并重复上述第二步和第三步。

【技术特征摘要】
【国外来华专利技术】...

【专利技术属性】
技术研发人员:永井智浩
申请(专利权)人:株式会社村田制作所
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1