燃料电池的导流极板结构制造技术

技术编号:3256725 阅读:204 留言:0更新日期:2012-04-11 18:40
本实用新型专利技术涉及燃料电池的导流极板结构,该导流极板为导流双极板,所述的导流双极板由正面导空气流槽板、反面导氢气流槽板、中间导冷却流体夹层组成,所述的导流双极板上设有可供进出空气、进出氢气、进出冷却流体的流体孔,以及连接于进、出流体孔之间的导流槽;所述的进出空气或进出氢气的流体孔为单孔进、双孔或多孔出,设置在该进出空气或氢气流体孔之间的导流槽设计成直流槽或近直流槽;所述的进出冷却流体的流体孔为单孔或双孔或多孔进、双孔或多孔出,设置在该进出冷却流体的流体孔之间的导流槽设计成直流槽或近直流槽。与现有技术相比,本实用新型专利技术可减小阻力和压降等,使流体在流场上的分布均匀,增大有效面积、防止导流槽堵塞。(*该技术在2016年保护过期,可自由使用*)

【技术实现步骤摘要】

本技术涉及燃料电池,尤其涉及燃料电池的导流极板结构
技术介绍
电化学燃料电池是一种能够将氢燃料及氧化剂转化成电能及反应产物的装置。该装置的内部核心部件是膜电极(Membrane Electrode Assembly,简称MEA),膜电极(MEA)由一张质子交换膜、膜两面夹两张多孔性的可导电的材料,如碳纸组成。在膜与碳纸的两边界面上含有均匀细小分散的引发电化学反应的催化剂,如金属铂催化剂。膜电极两边可用导电物体将发生电化学反应过程中生成的电子,通过外电路引出,构成电流回路。在膜电极的阳极端,燃料可以通过渗透穿过多孔性扩散材料(碳纸),并在催化剂表面上发生电化学反应,失去电子,形成正离子,正离子可通过迁移穿过质子交换膜,到达膜电极的另一端阴极端。在膜电极的阴极端,含有氧化剂(如氧气)的气体,如空气,通过渗透穿过多孔性扩散材料(碳纸),并在催化剂表面上发生电化学反应得到电子,形成负离子。在阴极端形成的阴离子与阳极端迁移过来的正离子发生反应,形成反应产物。在采用氢气为燃料,含有氧气的空气为氧化剂(或纯氧为氧化剂)的质子交换膜燃料电池中,燃料氢气在阳极区的催化电化学反应就产生了氢正离子(或叫质子)。质子交换膜帮助氢正离子从阳极区迁移到阴极区。除此之外,质子交换膜将含氢气燃料的气流与含氧的气流分隔开来,使它们不会相互混合而产生爆发式反应。在阴极区,氧气在催化剂表面上得到电子,形成负离子,并与阳极区迁移过来的氢正离子反应,生成反应产物水。在采用氢气、空气(氧气)的质子交换膜燃料电池中,阳极反应与阴极反应可以用以下方程式表达阳极反应H2→2H++2e 阴极反应1/2O2+2H++2e→H2O在典型的质子交换膜燃料电池中,膜电极(MEA)一般均放在两块导电的极板中间,每块导流电极板与膜电极接触的表面通过压铸、冲压或机械铣刻,形成至少一条以上的导流槽。这些导流电极板可以是金属材料的极板,也可以是石墨材料的极板。这些导流电极板上的导流孔道与导流槽分别将燃料和氧化剂导入膜电极两边的阳极区与阴极区。在一个质子交换膜燃料电池单电池的构造中,只存在一个膜电极,膜电极两边分别是阳极燃料的导流极板与阴极氧化剂的导流极板。这些导流极板既作为电流集流母板,也作为膜电极两边的机械支撑,导流极板上的导流槽又作为燃料与氧化剂进入阳极、阴极表面的通道,并作为带走燃料电池运行过程中生成的水的通道。为了增大整个质子交换膜燃料电池的总功率,两个或两个以上的单电池通常可通过直叠的方式串联成电池组或通过平铺的方式联成电池组。在直叠、串联式的电池组中,一块极板的两面都可以有导流槽,其中一面可以作为一个膜电极的阳极导流面,而另一面又可作为另一个相邻膜电极的阴极导流面,这种极板叫做双极板。一连串的单电池通过一定方式连在一起而组成一个电池组。电池组通常通过前端板、后端板及拉杆紧固在一起成为一体。一个典型电池组通常包括(1)燃料及氧化剂气体的导流进口和导流通道,将燃料(如氢气、甲醇或由甲醇、天然气、汽油经重整后得到的富氢气体)和氧化剂(主要是氧气或空气)均匀地分布到各个阳极、阴极面的导流槽中;(2)冷却流体(如水)的进出口与导流通道,将冷却流体均匀分布到各个电池组内冷却通道中,将燃料电池内氢、氧电化学放热反应生成的热吸收并带出电池组后进行散热;(3)燃料与氧化剂气体的出口与相应的导流通道,燃料气体与氧化剂气体在排出时,可携带出燃料电池中生成的液、汽态的水。通常,将所有燃料、氧化剂、冷却流体的进出口都开在燃料电池组的一个端板上或两个端板上。质子交换膜燃料电池可用作一切车、船等运载工具的动力系统,又可作手提式、移动式、固定式的发电装置。质子交换膜燃料电池发电系统必须包括燃料电池堆、燃料氢气供应、空气供应、冷却散热、自动控制及电能输出等各个部分。质子交换膜燃料电池运行的稳定与可靠性对作为车、船动力系统或可移式发电装置的应用是非常重要的。其中提高燃料电池堆的运行稳定与可靠性是关键。目前,质子交换膜燃料电池堆在各流体通道的设计上通常采用牺牲极板的有效利用面积,在各膜电极与极板的相同位置开设流体孔,并将各块膜电极与极板经叠合组成各流体通道。也就是说,每块膜电极与极板上均设有燃料进、燃料出、氧化剂进、氧化剂出、冷却流体进、冷却流体出的流体孔,这些膜电极与导流极板经垂直叠合后就组成燃料电池组,而这些流体孔就组成了燃料电池组内部的燃料进、出;氧化剂进、出;冷却流体进、出的各流体导流通道,并将这些流体通道集合在燃料电池组前或后端板上组成燃料进口、燃料出口,氧化剂进口、氧化剂出口,冷却流体进口、冷却流体出口。例如Ballard Power Systems公司,在Us Patent 5,773,160及Us Patent5,840,438等美国专利中所用的二种燃料电池导流极板的设计如图1所示,图中1为该燃料电池的导流极板。上述燃料电池导流极板的流体孔与导流槽设计有如下特点1、为了将数量较多(可以达到一至二百块)的导流极板与电极叠合成燃料电池堆,导流极板上的各流体孔往往设计成较大的面积,特别是氧化剂空气的流体孔,由于空气流量需要很大,其流体孔面积也很大,这样可使电池就堆中的流体孔道容积足够大,使足够大的流量的流体可以均匀分布到各块导流极板上。2、为了增加电极二侧燃料氢气与氧化剂空气向电极反应区快速扩散,导流极板上的导流槽往往设计成蛇形或弯弯曲曲形状,使流体通过形成紊流,利于向电极内部反应区扩散。上述燃料电池导流极板流体孔道与导流槽设计有以下技术缺陷导流极板上的各流体孔面积较大,每种流体从进口流体孔流进,一般需要沿着多于一条的导流槽弯弯曲曲绕遍整个导流场,各条导流槽并一同从出口流体孔流出。由于多于一条的导流槽弯曲性很大,而且导流槽长度较长,燃料电池生成的产物水很容易在电极阴极侧出现而将空气导流槽堵塞,而且燃料电池生成的产物水也很容易通过反渗透在电极阳极侧出现,将氢气导流槽堵塞。特别是燃料电池作为车、船动力系统或可移式发电装置应用时,由于动力系统的工况变化很大,燃料电池的输出功率也变化很大,这样燃料电池生成的水更容易将空气、氢气导流槽堵塞。另外,为了防止燃料电池生成的水堵塞导流槽,往往采用提高燃料电池运行的空气与氢气计量比,也就是加大空气、氢气流量,用过量的空气、氢气将产物水带出燃料电池,这种运行方法实际上是大大降低了燃料电池系统效率,因为过量的空气被浪费或过量的氢气被循环输送,必然造成输送空气或循环氢气的机械功耗增加,从而降低了燃料电池系统效率。再次,当运行中燃料电池导流极板空气导流槽或氢气导流槽堵塞时,会表现某个别堵塞电池电压很低甚至出现负值,导致燃料电池运行不稳定,严重时会将电极击穿,并使整个电池堆毁坏。上海神力科技有限公司为了克服上述设计的缺点,曾经公开过“一种可提高燃料电池运行稳定性的导流极板”专利(专利技术专利申请号02155095.6,技术专利申请号02283431.1),其导流极板的结构示意图如图2所示,图中2、3分别为进出口流体孔、导流槽。一种可提高燃料电池运行稳定性的导流极板,包括导流极板本体,该本体上设有可供进出空气、进出氢气、进出冷却水流通的流体孔,以及连接于进、出流体孔之间的导流槽;其特征在于,所述的进出空气或进出氢气的流体孔为一对或多对,设本文档来自技高网...

【技术保护点】
燃料电池的导流极板结构,该导流极板为导流双极板,所述的导流双极板由正面导空气流槽板、反面导氢气流槽板、中间导冷却流体夹层组成,所述的导流双极板上设有可供进出空气、进出氢气、进出冷却流体的流体孔,以及连接于进、出流体孔之间的导流槽;其特征在于,所述的进出空气或进出氢气的流体孔为单孔进、双孔或多孔出,设置在该进出空气或氢气流体孔之间的导流槽设计成直流槽或近直流槽;所述的进出冷却流体的流体孔为单孔或双孔或多孔进、双孔或多孔出,设置在该进出冷却流体的流体孔之间的导流槽设计成直流槽或近直流槽。

【技术特征摘要】

【专利技术属性】
技术研发人员:胡里清李丽李拯章波
申请(专利权)人:上海神力科技有限公司
类型:实用新型
国别省市:31[中国|上海]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1