确定气体测量仪精度的方法技术

技术编号:2536669 阅读:159 留言:0更新日期:2012-04-11 18:40
为对处于高压气体管道中的仪表进行校正而采用与该仪表串联的音速喷嘴.布置一条旁通管道,并在其内进行测量,以确定为规定通过喷嘴流量之用的气体成分相关的系数.(*该技术在2006年保护过期,可自由使用*)

【技术实现步骤摘要】
本专利技术涉及气体流量测量,特别涉及对一高压管道中的气体测量仪精度的测定。在同一天提交的共同待批(CO-Pending)备审案目录号为01AM42187的申请中揭示了一种装置以用于安置对处于气体管道中的气量计进行现场校正而配置的一个音速喷咀。当采用这一装置时,由于气体通过音速喷咀的速度是恒定的,在已知喷咀入口区的速度、喷咀喉部面积以及由气量表测量气体流量的时间情况下,可将真正的流量同由气量表测得的流量进行比较,以便确定该气量表的精度。采用此法的困难在于测定气体在音速情况下通过喷咀口时的速度。对理想气体来说,在音速情况下,通过喷咀口时的速度(Vt)为Vt=K R Tt]]>(1)其中K是比热率(the ratio of specific heats);R是气体成份的相关常数;和Tt是入口温度(°R)利用这一方程的基本问题在于不能测量入口温度以及R和K的量又取决于气体成份。本专利技术的前述和其他目的是根据这样一些原理来获得的;对高压气体提供一条旁通管路,在该旁通管中插入一个仪表和一个小喷咀,该喷咀和仪表在贝尔校准仪(Bell prover)上作过校正。在这根旁通道内进行测量,以确定精度方程内,与气体成份有关的因数。由于在旁通管道和主管道中所呈现的气体是相同的,所以利用这些因数以及其他易于测得的量,诸如温度和压力等,去测定与一个较大音速喷咀相串联的管道气量表的精度。通过以下结合唯一的一张附图的说明,我们将对上述专利技术的概要了解得更清楚,该附图是以图解说明在实施本专利技术时所采用设备的示意图。参照附图,该图显示了一个部分阀门位置,管道12输入的高压气体的体积由气量表14测得,然后通过管道16,其压力下降至一个连续分布的较低的出口压力。在正常工作期间,阀门18打开而阀门20被关闭。因此,在管道12中的气体通过仪表14,经阀门18、压力调节阀22而进入出口管道16。手动操作的闸阀24和26是常开的,只有在应急或维修时才关闭。当人们想要校正仪表14时,则关闭阀18并打开阀20,以便在通过仪表14后,气体流过管道28,通过音速喷咀30(该喷咀按前面引证过的共同待批专利申请而装备),通过管道32到管道16,与此同时,阀门34打开,使气体能流过旁通管道36。管道36上加入了一个压力容器42,而在该容器内配置了气量表44。表44的入口46是朝着压力容器42的内部打开的,而表44的出口48通过管50引出。管道50中的气体仍处在高压下。工作在极限流量状态下的一只小音速喷咀52通过仪表44控制着体积流量率。为得到极限流量,必须要有足够的压力降。为完成根据本专利技术的各项计算而备有一台计算机60,为此,下面将作详尽地说明。该台计算机接收来自仪表14和44的信息作为其输入流量信息,同时接收由处于气体流不同点的传感器所提供的压力和温度输入。计算机60还控制由阀18,20,30和34所控制的电磁阀的动作。根据本专利技术,利用下列作为通过音速喷咀30的气体流量的关系。该关系可在假设通过喷咀30的流量是一维的(即在任何横截面上流体的性能均是一致的),并假设等熵过程包含在通过喷咀30的气流内的情况下从方程(1)导出Qn=CdAtC*ZnR Tn]]>…… (2)其中Qn是喷咀30上游的体积流量率;Cd是喷咀30的流量输出系数,它考虑了通常限制在边界层的由磨擦产生的影响;At是喷咀30的颈部面积;C*R]]>是一个与气体成份有关的因子;Zn是气体流入喷咀30的超压缩性因子;和Tn是喷咀30上游气体的温度,当所有通过仪表的气体也通过喷咀30时,该仪表的精度百分比由下列方程给定精度%=100× (Qm)/(Qn) =Vmt×PmPn×TnTm×ZnZm×1CdAtC*ZnRTn×100]]>(3)式中t是测试时间;Vm是仪表14所指示的体积(PmTnZn)/(PnTmZm)是仪表14和喷咀30之间标准气体定律的修正量。上述方程可化简为精度%=100× (Qm)/(Qn) =Vmt×PmPn×TnTm×1Zm×1CdAtC*RTn×100]]>(4)在方程(4)中,V*m,t,Pm,Pn,Tn和Tm的大小可被测得,而Zm,Cd,At和C*R]]>的大小需被确定。要确定的第一项是C*ZnR]]>的值。由于同一气体流量以实际上相同的压力流过仪表14和喷咀30,则Zm=Zn。再者,该值与喷咀的大小无关。因此可采用一个小喷咀52来确定C*ZnR]]>值。对小喷咀52来说,方程(2)变为Qns=CdsAtsC*ZnR Tn s]]>= (V1)/(t2) (5)式中Tns是喷咀52上游的温度;Cds是喷咀52的排放因子;Ats是小喷咀52的颈部面积;V1是由仪表44所测得的体积和t2是测试时间然后要测量的是V1,t2和Tns。因此C1*ZnR=V1Cd sAt st2Tn s]]>(6)上述方程(6)中,只有排放因子与颈部面积相乘所表示出的因子CdsAts是未知的。该因子可将一种已知气体(最好是氮),以不同的高压通入一贝尔校准仪来预先测定。由气体定律已经知道(PbVb)/(TbZb) = (PnsVns)/(TnsZns) (7)其中下标“b”系指贝尔,下标“ns”系指小喷咀52,以及P,V,T和Z分别指压力,体积,温度和超压缩性。通过喷咀的体积Vns等于体积流率(Qns)乘以时间(t)。这样,该方程可表示为Vns=Qnsxt=CdsAtsC*ZnsR Tn s]]>xt. (8)又得PbVbTbZb=Pn sCd sAs tTn sZn sC*Zn sR Tn s.]]>(9)由于在贝尔(校准仪)中的气体是与流过喷咀的气体相同,而且他们在相同的压力下,Zb=Zns则从方程(9)可导出Cd sAt s=VbtPbPn sTn sTb1ZbC*R Tn s]]>(10)由于氮的全部性能是众所周知的,并已有文献记载;ZbC*R]]>是已知值。这样,由于方程(10)的右边的其它量是很容易测得的,所以即可测定排放系数。颈部面积因子CdsAts。现在再返回来谈方程(3),我们可假设仪表14处气体的超压缩性是同喷咀30处的相同,则Zm=Zn,而且精度百分比方程变为精度%=100× (Qm)/(Qn) =Vmt×PmPn×TnTm×1CdAtC*ZnRTn×100]]>(11)将方程(6)代入上式,则精度百分比方程变为精度%=100× (Qm)/(Qn) =Vmt×PmPn×TnTm×Cd sAt st2Tn sCdAtTnV1×100 .]]>(12)方程(12)中可能未知或测不到的仅仅是作为音速喷咀30的排放因子和颈部面积相乘表示出的系数项。然而对较小的喷咀来说,这些项易于通过上述采用的贝尔校准仪法或其它用于较大尺寸喷咀的测量和数学方法来预定,因此仪表14的精度是可以确定的。这样,这里揭示了一种用于确定一个气体测量仪精度的改进方法。人们知道,上述的实施例仅仅是本专利技术原理的应用说明,在不脱离本专利技术的精神和范围情况下,本领域内的技术人员可能设想出大量的其它装置和方法,本专利技术的精神和范围由所附本文档来自技高网...

【技术保护点】
用于确定高压管道中的气体测量仪精度的方法,特征在于包括以下步骤:(a)提供一个第一极限流量装置同上述仪器相串接;(b)采用一种已知气体和一台贝尔校准仪,确定作为一个第二个较小的极限流量装置的排放因子.颈部面积系数(C↓〔ds〕A↓〔 ts〕),其中***而Z↓〔b〕C*√R对所述已知气体是一个已知量;(c)通过以下步骤(C1-C5)确定所述管道中气体的系数C↓〔1〕*Z↓〔1〕√R↓〔1〕;(c1)在所述管道上提供一条旁通管;(c2)在所述旁通管中提 供一个仪表;(c3)在所述旁通管中将所述第二极限流量装置安装在紧靠所述仪表的下游侧;(c4)在给定时间(t↓〔2〕)内,测量通过所述仪表的气体体积(V↓〔1〕);(c5)计算C↓〔1〕*Z↓〔1〕√R↓〔1〕=V↓〔1〕/Cds Atst↓〔2〕√Ts↓〔2〕;(d)在预定时间(t)期间,测量通过所述仪器的体积(V↓〔m〕)及仪表压力(P↓〔m〕)和温度(T↓〔m〕)和第一装置压力(P↓〔n〕)和温度T↓〔n〕);[e]用下式计算所述仪器的精度百分比:精 度%=***。...

【技术特征摘要】
US 1985-5-16 06/734,934限定。权利要求1.用于确定高压管道中的气体测量仪精度的方法,特征在于包括以下步骤(a)提供一个第一极限流量装置同上述仪器相串接;(b)采用一种已知气体和一台贝尔校准仪,确定作为一个第二个较小的极限流量装置的排放因子。颈部面积系数(CdsAts),其中Cd sAt s=VbtPbPn sTn sTb1ZbC*R Tn s]]>而ZbC*R]]>对所述已知气体是一个已知量;(c)通过以下步骤(C1-C5)确定所述管道中气体的系数C1*Z1R1]]&...

【专利技术属性】
技术研发人员:欧文A希克斯罗伯特S雅各布森戴维F基小乔治W施奈德
申请(专利权)人:美国仪表公司
类型:发明
国别省市:US[美国]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1