【技术实现步骤摘要】
一种微纳压缩装置
本技术涉及生物科学
,尤其是一种用于对有限空间内的生物目标施加压缩力并观测其反应的一种微纳压缩装置。
技术介绍
近些年,在分子尺度上研究生物细胞对外界压力刺激的反应变得越来越重要,一般现有技术采用接触式探针技术如微压板、微纳压痕技术、原子力显微镜等,对位于衬底上的生物样品施加单方向的力,其缺点是会导致样品在不受压的方向移动,影响压缩效果,另一些现有技术采用光学阱操纵位于微流体通道内的小球,来对样品施加压缩力,其采用激光来产生力,但是,由于激光产生的局域的热量会使得样品温度上升,破坏生物样品的原始生存环境,因此无法采用较大功率的激光,导致施加到样品上的压缩力有限,所述一种微纳压缩装置能够解决问题。
技术实现思路
为了解决上述问题,本技术装置结合了微流体控制与磁力,用于对有限空间内的生物样品施加压缩力,并能够采用现有的商用光学显微镜来监控压缩过程。本技术所采用的技术方案是:所述一种微纳压缩装置包括光学显微镜、玻璃基片、金属箔、填充层、微压缩器、进液管、液体入口、出液管、液体 ...
【技术保护点】
1.一种微纳压缩装置,包括光学显微镜(1)、玻璃基片(2)、金属箔(3)、填充层(4)、微压缩器(5)、进液管(6)、液体入口(7)、出液管(8)、液体出口(9)、保护层(10)、电磁体I(11)、电磁体II(12)、电压源和电缆,xyz为三维坐标系,压缩实验材料有高分子小球(13)、大分子样品(14)、磁性小球(15)和液体,微压缩器(5)包括金属探针I(5-1)、金属探针II(5-2)、微通道I(5-3)、微通道II(5-4)、压缩通道(5-5)、端口I(5-6)、端口II(5-7)、端口III(5-8)和端口IV(5-9),/n其特征是:玻璃基片(2)上面的中间位置连 ...
【技术特征摘要】
1.一种微纳压缩装置,包括光学显微镜(1)、玻璃基片(2)、金属箔(3)、填充层(4)、微压缩器(5)、进液管(6)、液体入口(7)、出液管(8)、液体出口(9)、保护层(10)、电磁体I(11)、电磁体II(12)、电压源和电缆,xyz为三维坐标系,压缩实验材料有高分子小球(13)、大分子样品(14)、磁性小球(15)和液体,微压缩器(5)包括金属探针I(5-1)、金属探针II(5-2)、微通道I(5-3)、微通道II(5-4)、压缩通道(5-5)、端口I(5-6)、端口II(5-7)、端口III(5-8)和端口IV(5-9),
其特征是:玻璃基片(2)上面的中间位置连接有微压缩器(5)、两侧位置均沉积有厚度为500微米的金属箔(3),玻璃基片(2)上面高度为500微米的其余空间是填充层(4),填充层(4)完全覆盖微压缩器(5),液体入口(7)通过进液管(6)连接微压缩器(5)的端口II(5-7),液体出口(9)通过出液管(8)连接微压缩器(5)的端口III(5-8),电磁体I(11)和电磁体II(12)分别固定于两金属箔(3)上面,填充层(4)、进液管(6)、液体入口(7)、出液管(8)和液体出口(9)上方覆盖有保护层(10),光学显微镜(1)位于玻璃基片(2)下方的10厘米位置,用于观测微压缩器(5);
微压缩器(5)由一块硅片基底以及上面的微纳结构组成,微通道I(5-3)、微通道II(5-4)和压缩通道(5-5)均为微流体通道,微通道I(5-3)的两端分别具有端口I(5-6)和端口III(5-8),微通道II(5-4)的两端分别具有端口II(5-7)和端口IV(5-9),端口I(5-6)和端口IV(5-9)为密封,微通道I(5-3)和微通道II(5-4)之间具有若干相互平行的压缩通道(5-5),相邻压缩通道(5-5)的间隔为4微米,各压缩通道(5-5)的两端均分别与微通道I(5-3)和微通道II(5-4)连通,各压缩通道...
【专利技术属性】
技术研发人员:张向平,方晓华,
申请(专利权)人:金华职业技术学院,
类型:新型
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。