硫化物系固体电解质颗粒制造技术

技术编号:23941343 阅读:51 留言:0更新日期:2020-04-25 05:13
本发明专利技术涉及具有由Li、P、S及卤素(Ha)构成的立方晶系硫银锗矿型晶体结构的晶相的硫化物系固体电解质颗粒,能够确保与正极活性物质颗粒或负极活性物质颗粒之间的良好的接触状态、能够实现倍率特性及循环特性的进一步的改善。提出一种硫化物系固体电解质颗粒,其特征在于,通过XPS测定的、距颗粒表面深度5nm的位置处的卤素(Ha)的元素比率Z

Sulfide solid electrolyte particles

【技术实现步骤摘要】
【国外来华专利技术】硫化物系固体电解质颗粒
本专利技术涉及适合作为锂二次电池的固体电解质使用的硫化物系固体电解质颗粒,其为具有由锂(Li)、磷(P)、硫(S)及卤素(Ha)构成的立方晶系硫银锗矿型晶体结构的晶相的硫化物系固体电解质颗粒。
技术介绍
锂二次电池为如下结构的二次电池:在充电时,锂从正极以离子的形式溶出,向负极移动而被嵌入,在放电时与之相反,锂离子从负极返回到正极。锂二次电池具有能量密度大、寿命长等特征,因此作为摄像机等家电制品、笔记本型电脑、手机等便携型电子设备、动力工具等电动工具等的电源而被广泛使用,最近还被应用于在电动汽车(EV)、混合动力电动汽车(HEV)等上搭载的大型电池。这种锂二次电池由正极、负极、以及被这两个电极夹持的离子传导层构成,该离子传导层通常使用在由聚乙烯、聚丙烯等多孔质薄膜形成的分隔件中注满非水系的电解液而得到的物质。但是,由于作为电解质使用如此将可燃性的有机溶剂作为介质的有机电解液,因此不仅在用于防止挥发、漏出的结构/材料方面需要改善,而且在用于抑制短路时的温度上升的安全装置的安装、用于防止短路的结构/材料方面也需要改善。与之相对,使用将硫化锂(Li2S)等用作起始原料的固体电解质而将电池全固态化而成的全固态型锂二次电池不使用可燃性的有机溶剂,因此、能够实现安全装置的简化、而且能够制成制造成本、生产率优异的产品。另外,还具有在电池内串联地层叠而可实现高电压化的特征,进而,这种固体电解质中,除Li离子以外不会移动,因此期待会带来不产生由阴离子的移动导致的副反应等安全性、耐久性的提高。r>对于这种在电池中使用的固体电解质,要求尽可能离子电导率高、并且化学上/电化学上稳定,例如卤化锂、氮化锂、锂含氧盐或它们的衍生物等作为其候补材料而已知。关于这种固体电解质,例如专利文献1(WO2016/104702号公报)中公开了具有立方晶系硫银锗矿型晶体结构、由组成式(1):Li7-x+yPS6-xClx+y表示的化合物。另外,专利文献2(日本特开2016-24874号公报)中公开了一种硫化物系固体电解质,其特征在于,含有具有立方晶系硫银锗矿型晶体结构、由组成式(2):Li7-x-2yPS6-x-yClx表示的化合物,并且前述组成式(2)中,满足0.8≤x≤1.7、0<y≤-0.25x+0.5。进而,专利文献3(日本特开2012-94445号公报)中公开了如下主旨的提案:通过对硫化物系固体电解质颗粒的表面适当反复进行例如在暴露于大气之后进行干燥的处理,从而在硫化物系固体电解质颗粒的表面形成氧化物层,防止硫化物系固体电解质颗粒与氧化物活性物质的接触,抑制在硫化物系固体电解质颗粒表面形成高电阻部位。现有技术文献专利文献专利文献1:WO2016/104702号公报专利文献2:日本特开2016-24874号公报专利文献3:日本特开2012-94445号公报
技术实现思路
专利技术要解决的问题具有立方晶系硫银锗矿型晶体结构的硫化物系化合物具有结晶性高、离子导电性优异但是硬的特征。其中,具有含卤素(Ha)的立方晶系硫银锗矿型晶体结构的硫化物系化合物具有特别硬的特征,因此与正极活性物质颗粒或负极活性物质颗粒之间难以确保良好的接触状态,难以促进锂离子的良好的相互扩散,因此在提高倍率特性、循环特性时成为问题。因此,本专利技术涉及具有由锂(Li)、磷(P)、硫(S)及卤素(Ha)构成的立方晶系硫银锗矿型晶体结构的晶相的硫化物系固体电解质颗粒,尝试提供能够确保与正极活性物质颗粒或负极活性物质颗粒之间良好的接触状态、能够实现倍率特性及循环特性的进一步改善的、新型的硫化物系固体电解质颗粒。用于解决问题的方案本专利技术提出一种硫化物系固体电解质颗粒,其特征在于,其是具有由锂(Li)、磷(P)、硫(S)及卤素(Ha)构成的立方晶系硫银锗矿型晶体结构的晶相的硫化物系固体电解质颗粒,通过XPS(X-rayPhotoelectronSpectroscopy)测定的、距颗粒表面深度5nm的位置(以SiO2溅射速率换算)处的卤素(Ha)的元素比率ZHa2相对于距颗粒表面深度100nm的位置(以SiO2溅射速率换算)处的卤素(Ha)的元素比率ZHa1的比例(ZHa2/ZHa1)为0.5以下,并且,距颗粒表面深度5nm的位置(以SiO2溅射速率换算)处的、氧的元素比率ZO2相对于磷(P)、硫(S)、氧(O)及卤素(Ha)的元素比率的总和ZA2的比例(ZO2/ZA2)为0.5以上。以下,在本说明书中,距颗粒表面深度5nm的位置或100nm的位置是指以SiO2溅射速率换算的深度。专利技术的效果本专利技术提出的硫化物系固体电解质颗粒通过提高颗粒表面的氧浓度、并使颗粒表面的卤素(Ha)的浓度比颗粒内部低,由此能够确保与正极活性物质颗粒或负极活性物质颗粒之间良好的接触状态、能够改善倍率特性及循环特性。可以认为通过提高颗粒表面的氧浓度、并使颗粒表面的卤素(Ha)的浓度比颗粒内部低,表面会变得柔软,因此能够确保与正极活性物质颗粒或负极活性物质颗粒之间良好的接触状态。附图说明图1为实施例1、比较例1、比较例4中得到的样品的初次充放电曲线。图2为示出实施例1、比较例1、比较例4中得到的样品的容量维持率的图。具体实施方式接着,基于实施方式例对本专利技术进行说明。但是,本专利技术不限定于以下说明的实施方式。<本固体电解质颗粒>本实施方式的硫化物系固体电解质颗粒(称为“本固体电解质颗粒”)为具有由锂(Li)、磷(P)、硫(S)及卤素(Ha)构成的立方晶系硫银锗矿型晶体结构的晶相的颗粒。本固体电解质颗粒优选与颗粒内部相比、颗粒表面的卤素(Ha)的元素比率更低,因此,通过XPS测定的、距颗粒表面深度5nm的位置处的卤素(Ha)的元素比率ZHa2相对于距颗粒表面深度100nm的位置处的卤素(Ha)的元素比率ZHa1的比例(ZHa2/ZHa1)优选为0.5以下、其中进一步优选为0.50以下、尤其0.01以上或0.4以下、尤其0.40以下、尤其0.05以上或0.3以下、尤其0.30以下。另外,本固体电解质颗粒优选颗粒表面的卤素(Ha)的元素比率在颗粒表面的全部构成元素中相对较低,因此,通过XPS测定的、距颗粒表面深度5nm的位置处的卤素(Ha)的元素比率ZHa2相对于磷(P)、硫(S)、氧(O)及卤素(Ha)的元素比率的总和ZA2的比例(ZHa2/ZA2)优选为0.1以下、其中进一步优选为0.10以下、尤其0.01以上或0.08以下、尤其0.02以上或0.05以下。此时,对于本固体电解质颗粒,从在颗粒内部存在一定程度的量的卤素(Ha)的角度出发,通过XPS测定的、距颗粒表面深度100nm的位置处的卤素(Ha)的元素比率ZHa1相对于磷(P)、硫(S)、氧(O)及卤素(Ha)的元素比率的总和ZA1的比例(ZHa1/ZA1)优选为0.03~0.3、其中进一步优选为0.30以下、尤其0.0本文档来自技高网...

【技术保护点】
1.一种硫化物系固体电解质颗粒,其特征在于,其为具有由锂(Li)、磷(P)、硫(S)及卤素(Ha)构成的立方晶系硫银锗矿型晶体结构的晶相的硫化物系固体电解质颗粒,其中,/n通过XPS(X-ray Photoelectron Spectroscopy)测定的、距颗粒表面深度5nm的位置(以SiO

【技术特征摘要】
【国外来华专利技术】20180312 JP 2018-0442101.一种硫化物系固体电解质颗粒,其特征在于,其为具有由锂(Li)、磷(P)、硫(S)及卤素(Ha)构成的立方晶系硫银锗矿型晶体结构的晶相的硫化物系固体电解质颗粒,其中,
通过XPS(X-rayPhotoelectronSpectroscopy)测定的、距颗粒表面深度5nm的位置(以SiO2溅射速率换算)处的卤素(Ha)的元素比率ZHa2相对于距颗粒表面深度100nm的位置(以SiO2溅射速率换算)处的卤素的元素比率ZHa1的比例(ZHa2/ZHa1)为0.5以下,并且,
距颗粒表面深度5nm的位置(以SiO2溅射速率换算)处的、氧的元素比率ZO2相对于磷(P)、硫(S)、氧(O)及卤素(Ha)的元素比率的总和ZA2的比例(ZO2/ZA2)为0.5以上。


2.根据权利要求...

【专利技术属性】
技术研发人员:高桥司筑本崇嗣伊藤崇广
申请(专利权)人:三井金属矿业株式会社
类型:发明
国别省市:日本;JP

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1