当前位置: 首页 > 专利查询>温州大学专利>正文

含铁卟啉/碳纳米管复合正极材料的制备方法及其在锂硫电池正极中的应用技术

技术编号:21119249 阅读:18 留言:0更新日期:2019-05-16 10:05
本发明专利技术提供了一种含铁卟啉/碳纳米管复合正极材料的制备方法及其在锂硫电池正极中的应用,其制备方法为:将碳管取适量碳材料与硫单质混合研磨,加入CS2充分搅拌之后烘干制得含铁卟啉/碳纳米管复合正极材料;将含铁卟啉/碳纳米管复合正极材料与碳纳米管、聚偏氟乙烯混合,然后加入N‑甲基吡咯烷酮,以及1%~10%含铁卟啉,搅拌并超声分散均匀,得到浆料,将所得浆料均匀涂覆在集流体铝箔上,然后烘干,即得含铁卟啉/碳纳米管复合正极材料;本发明专利技术制备方法,操作简单,条件温和,易于大规模生产;可以解决锂硫电池充放电过程中多硫离子在液态电解液中的溶解,有效抑制穿梭效应,提高锂硫电池的库伦效率和循环稳定性。

Preparation of Ferroporphyrin/Carbon Nanotubes Composite Cathode Material and Its Application in Lithium-Sulfur Batteries

【技术实现步骤摘要】
含铁卟啉/碳纳米管复合正极材料的制备方法及其在锂硫电池正极中的应用
本专利技术属于纳米复合材料研究领域,特别涉及一种用于锂硫电池改善其电化学性能以及抑制多硫化物穿梭效应等方面的含铁卟啉/碳纳米管复合材料的制备方法及其在锂硫电池正极中的应用。
技术介绍
随着社会科技和经济的高速发展,储能成为了许多创新技术的关键,电池技术在电动汽车等新兴概念的推动下取得了巨大进步,各种机制的电池得到开发,但是锂硫电池却是下一代储能技术中最具有潜力的,因为锂离子电池自1991年商业化以来,经过20多年的发展,传统锂离子电池的正负极材料的性能均已接近其理论极限,但面对越来越庞大的储能系统仍不尽人意。而锂硫电池却具有很多优势,它的理论比容量为1675mAh·g-1,是传统锂离子电池的10倍,并且硫的储量丰富,价格低廉,低毒无公害。但是,锂硫电池中硫的绝缘性、多硫化物的穿梭效应、化学反应动力学过程缓慢等原因,成为了锂硫电池在商业应用过程中的阻碍。过去十年中,科研工作者深入研究了如何抑制多硫化物的穿梭效应,主要是通过物理吸附将硫限制在各种多孔碳材料中,但是这种电极材料的活性物质负载量低,对多硫化物的吸附能力有限,所以对提高电池性能收效甚微。最近,人们将电催化方法应用到锂硫电池中,利用Au、Pt等贵金属最为催化剂加快反应动力学同时抑制多硫化物的穿梭效应。这种方法效果显著但是成本高昂,无法实现商用。为了解决这些问题,实现其大规模的使用,必须研究开发成本低廉的催化材料和简便成本较低的制备方法来提高锂硫电池的电化学性能,从而提升锂硫电池的实际应用前景。
技术实现思路
本专利技术实施例所要解决的技术问题在于,提供一种含铁卟啉/碳纳米管复合正极材料的制备方法,本专利技术首次将含铁卟啉对多硫化物具有催化作用的金用于锂硫电池正极材料中,并制成浆料涂覆在传统硫锂电池铝箔材料上,改善了硫锂电池正极的导电性和多硫化物的穿梭效应等问题,展现出了优异的循环稳定性,具有大规模生产的优势。作为本专利技术的第一个方面,本专利技术提供一种包括以下步骤:(1)碳材料载硫复合材料的制备:碳材料与单质硫按质量比1:1~4混合,研磨均匀后以料液质量比1:10~15加入CS2中搅拌,然后置于10~30℃下至CS2挥发完全后,剩余物质于120~160℃烘箱中保温8~12h,之后冷却至室温,即得碳材料载硫复合材料,所述的碳材料为碳纳米管或石墨烯;(2)含铁卟啉/碳纳米管复合正极材料的制备:将步骤(1)所得碳材料载硫复合材料与导电添加剂、粘结剂按质量比1:0.05~0.25:0.05~0.15混合,然后加入N-甲基吡咯烷酮,以及在浆料中质量占1~10wt%的含铁卟啉,搅拌并超声分散均匀,控制粘度在1000~10000cps,得到浆料,将所得浆料以150~400mm的厚度均匀涂覆在集流体铝箔上,然后将铝箔转移至40~60℃烘箱内烘干,即得含铁卟啉/碳纳米管复合正极材料。进一步设置是所述的导电添加剂为碳纳米管,所述的粘结剂为聚偏氟乙烯。进一步设置是步骤(2)中所述集流体铝箔的厚度为30μmm,在使用前用N-甲基吡咯烷酮和酒精清洗,以除去表面氧化层和杂质。进一步设置是所述的含铁卟啉为氯化血红素、羟高铁血红素或间-四苯基卟啉氯化铁。本专利技术还提供一种如上述的制备方法所制备的含铁卟啉/碳纳米管复合正极材料。本专利技术还提供一种如上述的复合正极材料在锂硫电池正极材料中应用。本专利技术含铁卟啉/碳纳米管复合正极材料对锂硫电池性能的影响测试:(1)电池的组装:将本专利技术制得的含铁卟啉/碳纳米管复合正极材料,经双辊机滚压密实以后,切成直径为14mm的圆形片,在干燥的环境下称重,并扣除空白铝片质量,制成正极极片待用;作为对照实验,不含仿生材料的碳材料载硫复合正极材料也按同样方法制成对照正极极片待用;在充满氩气,水和氧气含量均小于lppm的手套箱中进行电池的组装:以商业金属锂片为参比电极和对电极,采用LiTFSI/DOL.DMC(1:1)且溶有1%LiNO3的液态电解液,隔膜采用Celgard2400,组装成CR2025纽扣电池以后,静置24h,然后进行充放电测试;(2)采用蓝电/新威电池测试系统在不同倍率下进行电池充放电测试,测试条件为室温环境,窗口电压为1.5~3.0V;本专利技术中所述的室温为10~30℃。本专利技术的有益效果在于:(1)采用含铁卟啉作为多硫化物的催化剂相较贵金属催化剂成本较低;(2)制备的含铁卟啉/碳纳米管复合正极材料,能够额外提供电子/离子传导途径,降低电池内阻,很大程度上提高了电池的放电容量和循环稳定性能;(3)含铁卟啉/碳纳米管复合正极材料能催化多硫化物加快化学反应动力学,从而抑制穿梭效应,提高锂硫电池性能;综上所述,一方面,本专利技术提供了含铁卟啉/碳纳米管复合正极材料的制备方法,操作简单,不涉及高温高压,室温下即可完成,易于大规模生产;另一方面,将制得的该复合正极材料用于锂硫电池中,可以解决锂硫电池充放电过程中多硫离子在液态电解液中的溶解,有效抑制穿梭效应,提高锂硫电池的库伦效率和循环稳定性。附图说明为了更清楚地说明本专利技术实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本专利技术的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,根据这些附图获得其他的附图仍属于本专利技术的范畴。图1:本专利技术实施例1制得的氯化血红素与碳管载硫复合正极材料用于锂硫电池以及羟高铁血红素与碳管载硫复合正极材料用于锂硫电池与不含仿生材料的锂硫电池的倍率性能对比图;图2:本专利技术实施例1氯化血红素与碳管载硫复合正极材料用于锂硫电池以及羟高铁血红素与碳管载硫复合正极材料用于锂硫电池与不含仿生材料的锂硫电池的循环伏安曲线对比图;图3:本专利技术实施例3制得的氯化血红素与碳管载硫复合正极材料用于锂硫电池以及羟高铁血红素与碳管载硫复合正极材料用于锂硫电池的充放电平台对比图。具体实施方式为使本专利技术的目的、技术方案和优点更加清楚,下面将结合附图对本专利技术作进一步地详细描述。实施例1:氯化血红素与碳纳米管载硫复合正极材料的制备及在锂硫电池中应用(1)碳纳米管载硫复合正极材料的制备:碳纳米管与单质硫按质量比1:1~4混合,研磨均匀后以料液质量比(即碳管或石墨烯材料及单质硫质量之和与CS2的质量之比)1:10~15加入CS2中搅拌,然后置于10~30℃下至CS2挥发完全后,剩余物质于120~160℃烘箱中保温8~12h,之后冷却至室温,即得羧基化多壁碳纳米管负硫复合材料;本实施例也可以采用石墨烯等同参数替换碳纳米管。(2)氯化血红素与碳纳米管载硫复合正极材料的制备:将步骤(1)所得复合材料与碳纳米管(导电添加剂)、聚偏氟乙烯(粘结剂)按质量比1:0.05~0.25:0.05~0.15混合,然后加入N-甲基吡咯烷酮(NMP),以及1%~10%的仿生材料,搅拌并超声分散均匀,控制粘度在1000~10000cps,得到浆料,将所得浆料以150~400mm的厚度均匀涂覆在集流体铝箔上,然后将铝箔转移至40~60℃烘箱内烘干,即得仿生材料与碳材料复合正极材料;(3)电池的组装:将步骤(2)制得的复合电极材料,经双辊机滚压密实以后,切成直径为14mm的圆形片,在干燥的环境下称重,本文档来自技高网...

【技术保护点】
1.一种含铁卟啉/碳纳米管复合正极材料的制备方法,其特征在于包括以下步骤:(1)碳材料载硫复合材料的制备:碳材料与单质硫按质量比1:1~4混合,研磨均匀后以料液质量比1:10~15加入CS2中搅拌,然后置于10~30℃下至CS2挥发完全后,剩余物质于120~160℃烘箱中保温8~12h,之后冷却至室温,即得碳材料载硫复合材料,所述的碳材料为碳纳米管或石墨烯;(2)含铁卟啉/碳纳米管复合正极材料的制备:将步骤(1)所得碳材料载硫复合材料与导电添加剂、粘结剂按质量比1:0.05~0.25:0.05~0.15混合,然后加入N‑甲基吡咯烷酮,以及在浆料中质量占1~10wt%的含铁卟啉,搅拌并超声分散均匀,控制粘度在1000~10000cps,得到浆料,将所得浆料以150~400mm的厚度均匀涂覆在集流体铝箔上,然后将铝箔转移至40~60℃烘箱内烘干,即得含铁卟啉/碳纳米管复合正极材料。

【技术特征摘要】
1.一种含铁卟啉/碳纳米管复合正极材料的制备方法,其特征在于包括以下步骤:(1)碳材料载硫复合材料的制备:碳材料与单质硫按质量比1:1~4混合,研磨均匀后以料液质量比1:10~15加入CS2中搅拌,然后置于10~30℃下至CS2挥发完全后,剩余物质于120~160℃烘箱中保温8~12h,之后冷却至室温,即得碳材料载硫复合材料,所述的碳材料为碳纳米管或石墨烯;(2)含铁卟啉/碳纳米管复合正极材料的制备:将步骤(1)所得碳材料载硫复合材料与导电添加剂、粘结剂按质量比1:0.05~0.25:0.05~0.15混合,然后加入N-甲基吡咯烷酮,以及在浆料中质量占1~10wt%的含铁卟啉,搅拌并超声分散均匀,控制粘度在1000~10000cps,得到浆料,将所得浆料以150~400mm的厚度均匀涂覆在集流...

【专利技术属性】
技术研发人员:杨植丁欣慰聂华贵詹迎新侯俊婕王宇赖玉崇郑仙诺孔素珍黄少铭
申请(专利权)人:温州大学
类型:发明
国别省市:浙江,33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1