一种N型碳化硅半导体肖特基二极管结构制造技术

技术编号:15280246 阅读:193 留言:0更新日期:2017-05-05 07:54
本发明专利技术涉及一种N型碳化硅半导体肖特基二极管结构,包括以下特征:在N型碳化硅肖特基二极管器件体内没有P型掺杂区,其中至少有一个沟槽,这沟槽的深度为0.5um至6.0um之间,宽度为0.4um至4.0um之间,沟槽内壁(侧边和底部)有一导电物质,厚度为0.01um至1um,沟槽中间填以介质层物质。这种沟槽结构是用来扩展器件在反向偏置时的耗尽层,避免电场过度集中而引起器件局部提早击穿。

N type silicon carbide semiconductor Schottky diode structure

The present invention relates to a N type silicon carbide semiconductor Schottky diode structure includes the following features: no P type doped region in N type silicon carbide Schottky diode device body, wherein the at least one groove, the groove depth is between 0.5um to 6.0um, the width is 0.4um to 4.0um between the inner wall of the groove (side and bottom) are a conductive material, the thickness of 0.01um to 1um, a trench filled with dielectric layer material. The trench structure is used to extend the depletion layer when the device is in reverse bias, and avoid the premature breakdown of the device due to the over concentration of the electric field.

【技术实现步骤摘要】

本专利技术涉及一种N型碳化硅半导体器件的结构,更具体地说是涉及一种N型碳化硅半导体肖特基二极管的新结构。
技术介绍
使用硅器件的传统集成电路大都只能工作在250℃以下,不能满足高温、高功率及高频等要求。当中,新型半导体材料碳化硅(SiC)最受人注目和研究。碳化硅半导体材料具有宽带隙、高饱和漂移速度、高热导率、高临界击穿电场等突出优点,特别适合制作大功率、高压、高温、抗辐照电子器件。碳化硅禁带宽度宽(210eV≤Eg≤710eV),漏电流比硅小几个数量级。而且,碳化硅热稳定性极好,本征温度可达800℃以上,它保证了在高温工作时的长期可靠性。通过分析优值,如Johnson优值(JFOM-通过材料的击穿电场、饱和电子漂移速度来反映相应器件的高功率、高频率性能)、Keyes优值(KFOM-通过材料的热导率、饱和电子漂移速度及介电常数反映相应器件的开关速度和热限制)及热优值(QFOM-通过材料的击穿电场、击穿电场及热导率反映相应器件的散热性能),会发现碳化硅SiC这几个优值都比现在常用的半导体材料高出很多,是实现结合高温与高频高功率的一种理想材料。碳化硅击穿电场较高,是硅材料的8倍,这对功率器件甚为关键。导通电阻是与击穿电场的立方成反比,所以碳化硅SiC功率器件的导通电阻只有硅器件的百至二百分之一,显着降低电子设备的能耗。因此,碳化硅SiC功率器件也被誉为带动“新能源革命”的“绿色能源”器件。用碳化硅SiC所制造出来的功率器件具有低比导通电阻,高工作频率和高温工作稳定性的优点,拥有很广阔的应用前景。随着6H、4H-SiC体材料的相继商品化,碳化硅SiC器件工艺,如氧化、掺杂、刻蚀及金属、半导体接触,都日渐成熟,这些为碳化硅SiC器件的研制及应用奠定了基础。600V和1200VN型碳化硅肖特基二极管是最早商品化的碳化硅器件,一般的碳化硅N型肖特基二极管的器件结构如图1所示,这结构的组成主要可以分为有源区与终端区,有源区由肖特基金属接触与PN结並连,终端区由场限环组成。因为碳化硅PN结的导通电压一般大于3V而肖特基金属接触的导通电压是1V左右,当正向导通电压少于3V时,导通电流主要是电子电流从衬底的阳极流经肖特基势垒进入表面阴极电极,所以是单一载流子器件。当器件处于反向偏置时,电子尝试从表面跨越肖特基势垒而进入碳化硅半导体内,在一般反偏置不是很大时,在表面电极內只有非常小的一部份电子能获得足够能量跨越势垒进入碳化硅半导体内而形成反向漏电流的一部份,当反偏较大时,有源区里的P型掺杂区的耗尽层会连接起来把表面的肖特基金属接触屏蔽起來,使得表面电极里的电子更难进入碳化硅半导体内,从而使得碳化硅肖特基二极管反向时,除了漏电流外是不导电的,所以肖特基二极管便成为单向导通器件。要形成图1的器件结构是要在碳化硅体內形成P型掺杂区的。基于碳化硅SiC的键强度高,杂质扩散所要求的温度(>1800℃),大大超过标准器件工艺的条件,所以器件制作工艺中的掺杂不能采用扩散工艺,只能利用外延控制掺杂和高温离子注入掺杂。外延掺杂可利用碳化硅源气体流量变化,使掺杂浓度控制在从轻掺杂(1014/cm3)到简并掺杂(>1019/cm3)的范围。硅烷、丙烷是碳化硅SiC典型的外延气体源。6H-SiC在硅(Si)面N型衬底上同质外延典型的生长速率为3μm/h。在生长反应室中,通过调节气体源的比例来进行位置竞争外延,使杂质位于晶格位置。在碳(C)面衬底上的生长则不同,但对其生长机制尚无深刻了解。因为不能采用扩散工艺掺杂,离子注入工艺在器件制作中非常重要。铝(Al)和硼(B)为典型的P型掺杂元素,产生相对深的受主能级(分别为211meV和300meV),Al的电离能小于B的电离能,Al要求的激活温度比B低;而B原子比Al原子轻,注入引起的损伤较少,且注入范围更深,应根据器件工艺要求来选择注入元素。可是,当离子注入碳化硅过大时,会引致晶格损伤,形成非晶化的结构,大大降低碳化硅原有的性能。为了减少注入离子时所引起的晶格损伤和非晶化结构出现,在注入离子时需对衬底加上高温,一般对N注入时需要约650℃,在对Al注入时需要约700~800℃。注入后,还需要经过高温退火热处理(>1300℃),把注入的离子激活,同时令注入离子时所引起的的晶格损伤复原。由于SiC的键强度高,需要在高温下才能产生晶格空缺,让掺杂离子填入,获得激活。文献报道了退火温度1300℃得到少于10%激活率;当温度大于1600℃时,激活率才会超过95%。当温度大于1300℃时,SiC内的Si会蒸发出来,器件晶圆表面亦会粗化,令器件效能降低。现有的工艺是在晶圆最顶层表面沉积碳化硅(SiC)或石墨(C)层作为保护,然后才进行退火热处理,退火后要把石墨层清除掉,形成P型掺杂区是关键的步骤,也是很增加成本的步骤,若果N型碳化硅肖特基二极管结构不需要P型掺杂区,制作成本上便可以大为降低。
技术实现思路
本专利技术的目的在于提出一种能避免上述不足而实用可行的一种有关N型碳化硅肖特基二基极管的有源区结构和终端区结构。使用本专利技术来制作N型肖特基二极管时可以不用注入P型掺杂区,也不用在N型外延层上长P型外延层,这可大大降低器件的制作成本。一般肖特基二极管的有源区或是终端区都是用P型掺杂区,如图1所示,来扩展反向偏置时的耗尽层,避免耗尽层过于集中,即避免电场过度集中而引起器件局部提早击穿。本专利技术的核心思想是不用P型掺杂区来扩展器件在反向偏置时的耗尽层,而改用沟槽结构,这沟槽的深度为0.5um至6.0um之间,宽度为0.5um至4.0um之间,沟槽内壁(侧边和底部)有一导电物质层如掺杂或非掺杂多晶硅或难容金属等,厚度为0.01um至1um,侧边的厚度与底部的厚度可以各自独立选取,有源区的沟槽与终端区沟槽可以各自独立选取其特征,中间可以填以介质层物质或导电物质等。这种沟槽结构之所以能夠扩展外延层,因为当电场力線遇到沟槽中的导电物质时,电场力線无法穿越导电物质而绕道到旁边未耗尽的区域从而扩展了耗尽层,在图2中的有源区,沟槽结构在器件处于电压反偏置时能使耗尽层很快便扩展並连合起来而屏蔽掉肖特基金属接触,使反向电压只有一小部份落在肖特基势垒上,这会使得反向时的漏电流大为减少。在终端区处,如果没有任何终端结构处,如图2所示,在反向偏置时,电场会集中在有源区的边缘的表面处使器件提早击穿。假如在终端处恰当的位置放上以上所说的沟槽结构,这些沟槽单元会使反置时的耗尽层不至太集中而扩展开来,最终使器件达至最优化亦即最大的击穿电压,有源区与终端区可以有各自独立的结构。如图3所示,有源区除了肖特基金属与碳化硅接触之外,没有任何可以帮助扩展反向偏置时的耗尽层,终端区用填以导电材料的沟槽來扩展反向电压的耗尽层。如图4所示,有源区和终端区都是用填以导电材料的沟槽來扩展反向电压的耗尽层,而有源区的沟槽没有被连接至表面金属,而是悬浮的,终端区的沟槽中的导电物质在表面可以连接有场板,也可以不连接有场板。如图5所示,有源区和终端区都是用侧壁和底部填以导电材料而中间填以介质材料的沟槽來扩展反向电压的耗尽层,而有源区的沟槽没有被连接至表面金属,而是悬浮的,终端区的沟槽中的导电物质在表面可以连接本文档来自技高网
...
一种<a href="http://www.xjishu.com/zhuanli/59/201510716806.html" title="一种N型碳化硅半导体肖特基二极管结构原文来自X技术">N型碳化硅半导体肖特基二极管结构</a>

【技术保护点】
一种N型碳化硅半导体肖特基二极管结构包括以下部分:(1)有源区和终端区;(2)有源区和终端区体内没有P型掺杂区;(3)终端区内至少有一个沟槽用来扩展器件在反向偏置时的耗尽层。

【技术特征摘要】
1.一种N型碳化硅半导体肖特基二极管结构包括以下部分:(1)有源区和终端区;(2)有源区和终端区体内没有P型掺杂区;(3)终端区内至少有一个沟槽用来扩展器件在反向偏置时的耗尽层。2.根据权利要求1之(2)所述的P型掺杂区,其特征在于,所述的P型掺杂区可以是由外延形成的或由离子注入后退火激活形成的。3.根据权利要求1之(3)所述的沟槽,其特征在于,该沟槽的深度为0.5um至6.0um之间,宽度为0.5um至4.0um之间,该沟槽可以是填以导电物质,该导电物质可以是P型掺杂多晶硅或N型掺杂多晶硅或非掺杂多晶硅或金属或难容金属等或不同导电物质的组合。4.根据权利要求1之(3)所述的沟槽,其特征在于,该沟槽的深度为0.5um至6.0um之间,宽度为0.5um至4.0um之间,该沟槽可以是其内壁(侧边和底部)填以导电物质,厚度为0.01um至1um,侧边的厚度与底部的厚度可以各自独立选取,沟槽中间填以介质。5.根据权利要求4所述的沟槽中间填以介质,其特征在于,该介质层物质可以是二氧化硅或氮化硅或Al2O3或TiO2或ZrO2或HfO2或ZnO,NiO或CoOx或CaF或SrF或ZnF等或不同介质层的组合。6.根据权利要求4所述的沟槽内壁填以导电物质,其特征在于,该导电物质可以是P型掺杂多晶硅或N型掺杂多晶硅或非掺杂多晶硅或金属或难容金属等或不同导电物质的组合。7.根据权利要求1之(3)所述的至少有一个沟槽,其特征在于,该沟槽中的导电物质在表面可以连接有场板,也可以不连接有场板。8.一种N型碳化硅半导体肖特基二极管结构包括以下部分:(1)有源区和终端区;(2)有源区和终端区体内没有P型掺杂区;(3)有源区内至少有一个沟槽用来扩展器件在反向偏置时的耗尽层;(4)终端区内至少有一个沟槽用来扩展器件在反向偏置时的耗尽层。9.根据权利要求8之(3)和8之(4)所述的沟槽,其特征在于,8之(3)的沟槽和8之(4)的沟槽其结构可以各自独立,可以各自独立选取其结构特征。10.根据权利要求8之(3)所述的沟槽,其特征在于,该沟槽的深度为0.5um至6.0um之间,宽度为0.5um至4.0um之间,该沟槽可以是填以导电物质,该导电物质可以是P型掺杂多晶硅或N型...

【专利技术属性】
技术研发人员:苏冠创黄升晖
申请(专利权)人:南京励盛半导体科技有限公司
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1