一种用于横切的免编程电子凸轮曲线生成方法技术

技术编号:14652642 阅读:255 留言:0更新日期:2017-02-16 15:15
本发明专利技术提供一种用于横切的免编程电子凸轮曲线生成方法,该方法根据5次方无量纲化的位置关系函数微分得到速度、加速度、加加速度函数;根据切长的不同,选择不同的条件求出方程系数,将函数进行无量纲值和真实值转换,再进行坐标偏移得到分段函数。本发明专利技术只需设置参数刀周长、同步区总长度、切长3个参数,即可生成电子凸轮曲线,同时经过计算避免从轴产生反向速度。在横切领域,这种这种方法生成的电子凸轮曲线将简化现场人员的操作、调试,免于编程,并具有更高的可靠性;速度曲线为4次方函数,与3次方函数相比更为柔和,平顺。

【技术实现步骤摘要】

本专利技术属于电子凸轮
,具体为一种用于横切的免编程电子凸轮曲线生成方法
技术介绍
电子凸轮控制近年来在我国自动化行业应用广泛,其原理就是获取主轴位置和速度,查看电子凸轮曲线,得出从轴位置和速度,从而实现主轴和从轴的啮合运动。电子凸轮曲线生成为电子凸轮控制的关键部分。例如,中国专利技术专利“一种电子凸轮曲线生成方法”中描述了一种方法,通过给出主从轴位置点,对主轴位置进行参数化,利用样条函数插值运算,得到各位置点之间的曲线表达式,从而求出主从轴的位置对应分段函数。但是这个方法需要采集多个位置点的数据,并计算得出曲线表达式,实现步骤复杂,计算量大。
技术实现思路
为了克服现有技术中存在的缺点和不足,本专利技术的目的在于提供一种用于横切的免编程电子凸轮曲线生成方法,只需设置参数刀周长、同步区总长度、切长三个参数,即可生成电子凸轮曲线,实现步骤简单,计算量小。本专利技术的技术方案如下:一种用于横切的免编程电子凸轮曲线生成方法,包括以下步骤:S1:将电子凸轮曲线的主轴位置-从轴位置关系拟合成基本函数,基本函数采用5次方多项式:Y=FY(X)=D0+D1X+D2X2+D3X3+D4X4+D5X5;S2:对主轴位置-从轴位置关系的基本函数进行微分,得出了主轴速度-从轴位置关系的函数:V=FV(X)=D1+2D2X+3D3X2+4D4X3+5D5X4;对主轴速度-从轴位置关系的函数进行微分,得到了主轴加速度-从轴位置关系的函数:A=FA(X)=2D2+6D3X+12D4X2+20D5X3;对主轴加速度-从轴位置关系的函数进行微分,得出了主轴加加速度-从轴位置关系的函数:J=Fj(X)=6D3+24D4X+60D5X2;S3:将电子凸轮曲线根据横切领域的应用特点依次分为第一同步区、调整区和第二同步区;第一同步区的主轴位置-从轴位置关系呈线性关系:Y=X;第二同步区的主轴位置-从轴位置关系呈线性关系:Y=X+X0,其中X0为第二同步区前,主轴走过的距离;S4:设置3个参数,分别为:刀周长L刀、第一同步区与第二同步区的总长度L同,切长L切;S5:在调整区内,根据切长L切与刀周长L刀的大小关系,分为三种情况:第一种情况:切长L切小于刀周长L刀;第二种情况:切长L切等于刀周长L刀以及第三种情况:切长L切大于刀周长L刀;S6:第一种情况,依照边界条件:(a)电子凸轮曲线的起始端和终止端都在同步区;(b)在同步区主轴速度与从轴速度相等,那么从轴位置相对于主轴位置的斜率为1;(c)加速度在第一同步区和调整区的连接处的值为0,加速度在第二同步区与调整区的连接处的值为0,从而得出6个方程式,分别为:FY(0)=Y0=0、FY(1)=Y1=Δy/Δx、FV(0)=V0=1、FV(1)=V1=1、FA(0)=A0=0、FA(1)=A1=0,求出第一组的6个函数系数D0、D1、D2、D3、D4、D5;S7:第二种情况,则电子凸轮曲线的第一同步区、调整区和第二同步区的从轴位置相对于主轴位置呈线性关系:Y=X;S8:第三种情况,当切长L切大于刀周长L刀的情况,此时调整区刀的速度需要小于同步区的速度,根据分析可知,当切长超过一定值的时候将出现反转的情况,那么首先要求得产生反转的切长临界值,令Δy/Δx=K,因为要求切长临界值,那么Δx将不在是一个已知值,求出K便有了切长临界值,因为速度要产生反转现象,速度在区间的区间有极值点,通过这一条件确定K的值为K0,即有表达式:K0=(L刀-L同)/(L切-L同),则切长临界值:L切=(L刀-L同)K0+L同;根据切长临界值将第三种情况分为两种状态,第一种状态:切长L切大于刀周长L刀,且切长L切小于或等于切长临界值;第二种状态:切长L切大于刀周长L刀,且切长L切大于或者等于切长临界值;S9:第三种情况的第一种状态,与S6的第一种情况相同:依照边界条件:(a)电子凸轮曲线的起始端和终止端都在同步区;(b)在同步区主轴速度与从轴速度相等,那么从轴位置相对于主轴位置的斜率为1;(c)加速度在第一同步区和调整区的连接处的值为0,加速度在第二同步区与调整区的连接处的值为0,从而得出6个方程式,分别为:FY(0)=Y0=0、FY(1)=Y1=Δy/Δx、FV(0)=V0=1、FV(1)=V1=1、FA(0)=A0=0、FA(1)=A1=0,求出第二组的6个函数系数D0、D1、D2、D3、D4、D5;S10:第三种情况的第二种状态,将调整区分为减速区、静止区和加速区,其中,减速区下,根据减速区的起始和终止条件,以及在减速段结束位置,加加速度等于0,得出7个方程式:FY(0)=0、FY(1)=Δy0/Δx0、FV(0)=1、FV(1)=0、FA(0)=0、FA(1)=0、FJ(1)=0,求出第三组的6个函数系数D0、D1、D2、D3、D4、D5和减速区主轴的移动距离;加速区下,根据加速区的起始和终止条件,以及在加速段结束位置,加加速度等于0,得出7个方程式:FY(0)=0、FY(1)=Δy1/Δx1、FV(0)=0、FV(1)=1、FA(0)=0、FA(1)=0、FJ(1)=0,求出第四组的6个函数系数D0、D1、D2、D3、D4、D5和加速区主轴的移动距离Δx1;S11:进行无量纲值和真实值转换,并通过坐标偏移得到真实值从轴位置与对应的真实值主轴位置的分段函数;S12:进行无量纲值和真实值转换,并通过坐标偏移得到真实从轴位置与对应的真实值主轴速度的分段函数。进一步的,第一同步区和第二同步区的长度相同。本专利技术的有益效果:本专利技术提出的方法为一种用于横切的电子凸轮生成方法,只需设置参数刀周长、同步区总长度、切长三个参数,即可生成电子凸轮曲线,同时经过计算避免从轴产生反向速度。在横切领域,这种这种方法生成的电子凸轮曲线将简化现场人员的操作、调试,免于编程,并具有更高的可靠性;速度曲线为4次方函数,与3次方函数相比更为柔和,平顺。附图说明图1是本专利技术的实现流程图。图2是本专利技术的主轴位置-从轴位置关系图。具体实施方式为了便于本领域技术人员的理解,下面结合具体实施例及附图对本专利技术作进一步的说明,实施方式提及的内容并非对本专利技术的限定。第一步:由从轴位置相对于主轴位置的无量纲化的基本函数式(1)微分得到速度式(2)、加速度式(3)、加加速度函数式(4),加加速度即为加速度的变化量,自变量都为主轴位置的无量纲值:Y=FY(X)=D0+D1X+D2X2+D3X3+D4X4+D5X5(1)V=FV(X)=D1+2D2X+3D3X2+4D4X3+5D5X4(2)A=FA(X)=2D2+6D3X+12D4X2+20D5X3(3)J=Fj(X)=6D3+24D4X+60D5X2(4)第二步:根据横切领域的应用特点,曲线将分为第一同步区,调整区,第二同步区,第一同步区和第二同步区的长度相同,同步区内主线速度和刀线速度相等,第一同步区的主轴位置-从轴位置关系呈线性关系:Y=X;第二同步区的主轴位置-从轴位置关系呈线性关系:Y=X+X0,其中X0为第二同步区前,主轴走过的距离;第二步只讨论调整区的曲线计算方法,根据切长和刀周长的大小关系,分为三种情况:第一种情况,当切长L切小于刀周长L刀的情况,此时调整区刀的速度需要大于同步区刀的速度,依照边本文档来自技高网...
一种用于横切的免编程电子凸轮曲线生成方法

【技术保护点】
一种用于横切的免编程电子凸轮曲线生成方法,其特征在于:包括以下步骤:S1:将电子凸轮曲线的主轴位置‑从轴位置关系拟合成基本函数,基本函数采用5次方多项式:Y=FY(X)=D0+D1X+D2X2+D3X3+D4X4+D5X5;S2:对主轴位置‑从轴位置关系的基本函数进行微分,得出了主轴速度‑从轴位置关系的函数:V=FV(X)=D1+2D2X+3D3X2+4D4X3+5D5X4;对主轴速度‑从轴位置关系的函数进行微分,得到了主轴加速度‑从轴位置关系的函数:A=FA(X)=2D2+6D3X+12D4X2+20D5X3;对主轴加速度‑从轴位置关系的函数进行微分,得出了主轴加加速度‑从轴位置关系的函数:J=Fj(X)=6D3+24D4X+60D5X2;S3:将电子凸轮曲线根据横切领域的应用特点依次分为第一同步区、调整区和第二同步区;第一同步区的主轴位置‑从轴位置关系呈线性关系:Y=X;第二同步区的主轴位置‑从轴位置关系呈线性关系:Y=X+X0,其中X0为第二同步区前,主轴走过的距离;S4:设置3个参数,分别为:刀周长L刀、第一同步区与第二同步区的总长度L同,切长L切;S5:在调整区内,根据切长L切与刀周长L刀的大小关系,分为三种情况:第一种情况:切长L切小于刀周长L刀;第二种情况:切长L切等于刀周长L刀以及第三种情况:切长L切大于刀周长L刀;S6:第一种情况,依照边界条件:(a)电子凸轮曲线的起始端和终止端都在同步区;(b)在同步区主轴速度与从轴速度相等,那么从轴位置相对于主轴位置的斜率为1;(c)加速度在第一同步区和调整区的连接处的值为0,加速度在第二同步区与调整区的连接处的值为0,从而得出6个方程式,分别为:FY(0)=Y0=0、FY(1)=Y1=Δy/Δx、FV(0)=V0=1、FV(1)=V1=1、FA(0)=A0=0、FA(1)=A1=0,求出第一组的6个函数系数D0、D1、D2、D3、D4、D5;S7:第二种情况,则电子凸轮曲线的第一同步区、调整区和第二同步区的从轴位置相对于主轴位置呈线性关系:Y=X;S8:第三种情况,当切长L切大于刀周长L刀的情况,此时调整区刀的速度需要小于同步区的速度,根据分析可知,当切长超过一定值的时候将出现反转的情况,那么首先要求得产生反转的切长临界值,令Δy/Δx=K,因为要求切长临界值,那么Δx将不在是一个已知值,求出K便有了切长临界值,因为速度要产生反转现象,速度在区间的区间有极值点,通过这一条件确定K的值为K0,即有表达式:K0=(L刀‑L同)/(L切‑L同),则切长临界值:L切=(L刀‑L同)K0+L同;根据切长临界值将第三种情况分为两种状态,第一种状态:切长L切大于刀周长L刀,且切长L切小于或等于切长临界值;第二种状态:切L切长大于刀周长L刀,且切长L切大于或者等于切长临界值;S9:第三种情况的第一种状态,与S6的第一种情况相同:依照边界条件:(a)电子凸轮曲线的起始端和终止端都在同步区;(b)在同步区主轴速度与从轴速度相等,那么从轴位置相对于主轴位置的斜率为1;(c)加速度在第一同步区和调整区的连接处的值为0,加速度在第二同步区与调整区的连接处的值为0,从而得出6个方程式,分别为:FY(0)=Y0=0、FY(1)=Y1=Δy/Δx、FV(0)=V0=1、FV(1)=V1=1、FA(0)=A0=0、FA(1)=A1=0,求出第二组的6个函数系数D0、D1、D2、D3、D4、D5;S10:第三种情况的第二种状态,将调整区分为减速区、静止区和加速区,其中,减速区下,根据减速区的起始和终止条件,以及在减速段结束位置,加加速度等于0,得出7个方程式:FY(0)=0、FY(1)=Δy0/Δx0、FV(0)=1、FV(1)=0、FA(0)=0、FA(1)=0、FJ(1)=0,求出第三组的6个函数系数D0、D1、D2、D3、D4、D5和减速区主轴的移动距离;加速区下,根据加速区的起始和终止条件,以及在加速段结束位置,加加速度等于0,得出7个方程式:FY(0)=0、FY(1)=Δy1/Δx1、FV(0)=0、FV(1)=1、FA(0)=0、FA(1)=0、FJ(1)=0,求出第四组的6个函数系数D0、D1、D2、D3、D4、D5和加速区主轴的移动距离Δx1;S11:进行无量纲值和真实值转换,并通过坐标偏移得到真实值从轴位置与对应的真实值主轴位置的分段函数;S12:进行无量纲值和真实值转换,并通过坐标偏移得到真实值从轴位置与对应的真实值主轴速度的分段函数。...

【技术特征摘要】
1.一种用于横切的免编程电子凸轮曲线生成方法,其特征在于:包括以下步骤:S1:将电子凸轮曲线的主轴位置-从轴位置关系拟合成基本函数,基本函数采用5次方多项式:Y=FY(X)=D0+D1X+D2X2+D3X3+D4X4+D5X5;S2:对主轴位置-从轴位置关系的基本函数进行微分,得出了主轴速度-从轴位置关系的函数:V=FV(X)=D1+2D2X+3D3X2+4D4X3+5D5X4;对主轴速度-从轴位置关系的函数进行微分,得到了主轴加速度-从轴位置关系的函数:A=FA(X)=2D2+6D3X+12D4X2+20D5X3;对主轴加速度-从轴位置关系的函数进行微分,得出了主轴加加速度-从轴位置关系的函数:J=Fj(X)=6D3+24D4X+60D5X2;S3:将电子凸轮曲线根据横切领域的应用特点依次分为第一同步区、调整区和第二同步区;第一同步区的主轴位置-从轴位置关系呈线性关系:Y=X;第二同步区的主轴位置-从轴位置关系呈线性关系:Y=X+X0,其中X0为第二同步区前,主轴走过的距离;S4:设置3个参数,分别为:刀周长L刀、第一同步区与第二同步区的总长度L同,切长L切;S5:在调整区内,根据切长L切与刀周长L刀的大小关系,分为三种情况:第一种情况:切长L切小于刀周长L刀;第二种情况:切长L切等于刀周长L刀以及第三种情况:切长L切大于刀周长L刀;S6:第一种情况,依照边界条件:(a)电子凸轮曲线的起始端和终止端都在同步区;(b)在同步区主轴速度与从轴速度相等,那么从轴位置相对于主轴位置的斜率为1;(c)加速度在第一同步区和调整区的连接处的值为0,加速度在第二同步区与调整区的连接处的值为0,从而得出6个方程式,分别为:FY(0)=Y0=0、FY(1)=Y1=Δy/Δx、FV(0)=V0=1、FV(1)=V1=1、FA(0)=A0=0、FA(1)=A1=0,求出第一组的6个函数系数D0、D1、D2、D3、D4、D5;S7:第二种情况,则电子凸轮曲线的第一同步区、调整区和第二同步区的从轴位置相对于主轴位置呈线性关系:Y=X;S8:第三种情况,当切长L切大于刀周长L刀的情况,此时调整区刀的速度需要小于同步区的速度,根据分析可知,当切长超过一定值的时候将出现反转的情况,那么首先要求得产生反转的切长临界值,令Δy/Δx=...

【专利技术属性】
技术研发人员:王浩吴国赛周义仁卢东
申请(专利权)人:威科达东莞智能控制有限公司
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1