6+X定位方法技术

技术编号:14239884 阅读:85 留言:0更新日期:2016-12-21 15:28
本发明专利技术公开了一种6+X定位方法,该方法将待加工零件划分为固定装夹区域和浮动装夹区域,固定装夹区限制零件的6个自由度,保证加工基准,浮动装夹区域采用X个浮动定位点辅助支撑零件,浮动定位点在加工过程中根据零件变形不断调整定位位置以充分释放变形。本发明专利技术实现了零件的准确定位,有效减少了加工变形,保证了零件的加工精度。

6+X positioning method

The invention discloses a 6+X positioning method, the method of parts to be processed into the fixed clamping area and floating clamping area, fixed clamping area limited parts of the 6 degrees of freedom, ensure the machining datum, floating clamping area of the X floating point of the auxiliary supporting parts, floating point positioning in machining in the process of constantly adjust the position according to the deformation of parts to the full release of deformation. The invention realizes the accurate positioning of the parts, effectively reduces the processing deformation, and ensures the machining precision of the parts.

【技术实现步骤摘要】

本专利技术涉及一种机械加工技术,尤其是一种机械零件的无应力站装夹定位技术,具体地说是一种在加工过程中既保证加工基准又能释放变形的6+X定位方法
技术介绍
零件加工过程中,为了保证加工基准,通常采用固定装夹方法,使零件在加工过程中保持固定。由于材料去除引起的残余应力重新分布导致零件产生的变形在装夹打开后集中释放,零件最终会产生较大的变形,无法满足零件的精度要求。为了减小加工变形,目前多采用优化装夹布局、调整切削参数等方法,这些方法都是基于固定装夹,很难解决残余应力释放导致的变形。针对加工导致零件变形的问题,专利技术专利CN104625785B专利技术了浮动装夹自适应加工方法与工艺装备,该方法随着零件的加工变形自动调整零件装夹的状态,加工中零件能够充分释放变形,零件卸载后变形量小。浮动装夹自适应加工方法在加工过程中即要保证加工基准又能释放变形,而传统基于固定装夹的定位方法已无法满足该方法的要求。
技术实现思路
本专利技术的目的是针对传统定位方法不能适用于浮动装夹自适应加工方法的问题,专利技术了一种既能保证加工基准又能释放变形的6+X定位方法。本专利技术的技术方案是:一种6+X定位方法,其特征是将待加工零件划分为固定装夹区域和浮动装夹区域,固定装夹区域限制零件6个自由度,保证加工基准,浮动装夹区域采用X个浮动定位点辅助支撑零件,浮动定位点在加工过程中根据零件变形不断调整定位位置以充分释放变形。零件的固定装夹区域根据零件中间加工状态质心计算,零件的其余区域为浮动装夹区域。所述的中间加工状态质心的计算方法为:首先通过分析零件的结构特征和加工特点,对零件进行加工特征分类,并定义各特征加工时的材料去除区域为该特征的加工几何,再根据零件加工工艺参数对加工几何进行分层,以单个特征加工几何的单个加工层为一个加工单元,零件加工过程中每去除一个加工单元,即产生一个新的中间加工状态,计算所有加工单元所对应的中间加工状态下的质心。中间加工状态几何以表示为毛坯减掉已去除的加工单元: P G = S G - Σ i = 1 k MG i ]]>式中PG表示当前中间加工状态几何,SG表示毛坯几何,MGi为零件的第i个加工单元的几何,k表示当前已去除的加工单元的数目。零件中间加工状态质心由毛坯的质心和加工单元的质心计算: r p → = m s r s → - Σ i = 1 k m i r → i m s - Σ i = 1 k m i ]]>式中表示当前中间加工状态质心的位置矢量,ms表示毛坯质量,为毛坯质心位置矢量,mi表示第i个加工单元的质量,为第i个加工单元的质心位置矢量,k表示当前已去除的加工单元的数目。所述的固定装夹区域的计算方法一为:在零件上确定主定位面,在主定位面上优化确定一个三角形包络零件所有中间加工状态质心,且使其面积最小,从而使零件所受的支撑力和重力保持平衡,并减小其对释放变形的影响,优化确定的三角形区域即为固定装夹区域。方法步骤如下:步骤一:根据零件特征,选择零件的下表面为主定位面。步骤二:将零件的全部中间加工状态的质心投影到主定位面上。步骤三:采用优化算法求解三角区域。以包络所有质心投影为约束,并保证三角形三边边长都不小于定位元件所需要的尺寸,以三角区域面积最小为优化目标,求解最优三个顶点坐标,解得的三角区域即为固定装夹区域。所述的固定装夹区域计算方法二为:首先在零件上确定主定位面,再计算中间加工状态质心集的中心,根据实验法或计算分析法在零件主定位面上确定变形满足一定条件的区域Sur,在区域Sur内找到一个三角区域,使其包络最多的中间加工状态质心,从而使零件所受的支撑力和重力保持平衡,保持零件稳定,再使优化顶点面积最小,从而减小其对释放变形的影响,求解的三角形区域即为固定装夹区域。步骤如下:步骤一:根据零件特征,选择零件的下表面为主定位面。步骤二:将零件的全部中间加工状态的质心投影到主定位面上。步骤三:计算中间加工状态质心集的中心将投影到主定位面上,坐标为O0。设零件有n个加工单元,则有n个中间加工状态质心,则表示为: r 0 → = Σ p = 1 n r → p n ]]>式中为第p个中间加工状态的质心位置矢量。步骤四:根据实验法或计算分析法得到零件整体变形分布,在零件主定位面上选择相对于O0变形量小于δ1的连续区域为Sur。式中δ1根据零件允许变形量(δ0)选取,δ1=μ*δ0,其中μ通过经验确定,一般取0.2~0.5。步骤五:以区域Sur为三角形顶点的约束,以三角区域所包络质心数量为优化目标,采用优化算法求解三角区域所能包络的最大质心数目P。步骤六:采用优化算法在区域Sur内求解三角形,使其包络P个质心,以三角区面积最小为优化目标,并保证三角形三边边长都不小于定位元件所需要的尺寸,求解最优三个顶点坐标,解得的三角区域即为固定装夹区域。三角区域未包络的质心所对应的中间加工状态不能进行变形释放。所述的“X个浮动定位点”,其中“X”的值根据实际加工需求以及零件刚度进行选取,以保证零件加工的稳定性。其中浮动定位本文档来自技高网...
6+X定位方法

【技术保护点】
一种6+X定位方法,其特征是将待加工零件划分为固定装夹区域和浮动装夹区域,固定装夹区域限制零件6个自由度,保证加工基准,浮动装夹区域采用X个浮动定位点辅助支撑零件,浮动定位点在加工过程中根据零件变形不断调整定位位置以充分释放变形;零件的固定装夹区域根据零件中间加工状态质心计算确定,零件的其余区域为浮动装夹区域。

【技术特征摘要】
1.一种6+X定位方法,其特征是将待加工零件划分为固定装夹区域和浮动装夹区域,固定装夹区域限制零件6个自由度,保证加工基准,浮动装夹区域采用X个浮动定位点辅助支撑零件,浮动定位点在加工过程中根据零件变形不断调整定位位置以充分释放变形;零件的固定装夹区域根据零件中间加工状态质心计算确定,零件的其余区域为浮动装夹区域。2.根据权利要求1所述的定位方法,其特征是中间加工状态质心的计算方法为:首先通过分析零件的结构特征和加工特点,对零件进行加工特征分类,并定义各特征加工时的材料去除区域为该特征的加工几何,再根据零件加工工艺参数对加工几何进行分层,以单个特征加工几何的单个加工层为一个加工单元,零件加工过程中每去除一个加工单元,即产生一个新的中间加工状态,计算所有加工单元所对应的中间加工状态下的质心;中间加工状态几何表示为毛坯减掉已去除的加工单元: P G = S G - Σ i = 1 k MG i ]]>式中PG表示当前中间加工状态几何,SG表示毛坯几何,MGi为零件的第i个加工单元的几何,k表示当前已去除的加工单元的数目;零件中间加工状态质心由毛坯的质心和加工单元的质心计算: r p → = m s r s → - Σ i = 1 k m i r → i m s - Σ i = 1 k m i ]]>式中表示当前中间加工状态质心的位置矢量,ms表示毛坯质量,为毛坯质心位置矢量,mi表示第i个加工单元的质量,为第i个加工单元的质心位置矢量,k表示当前已去除的加工单元的数目。3.根据权利要求1所述的...

【专利技术属性】
技术研发人员:郝小忠李迎光陈耿祥刘长青牟文平
申请(专利权)人:南京航空航天大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1