当前位置: 首页 > 专利查询>山东大学专利>正文

一种应用于微型风电系统的压缩空气混合储能系统及方法技术方案

技术编号:14160814 阅读:336 留言:0更新日期:2016-12-12 03:54
本发明专利技术公开了一种应用于微型风电系统的压缩空气混合储能系统及方法,压缩空气承担主要的功率波动平抑任务,蓄电池用来补充压缩空气难以跟踪的波动,从而保证储能系统整体的响应速度并减低储能成本。同时为了提高压缩空气储能系统的快速响应,以尽量降低和减少蓄电池使用量,本发明专利技术通过超前调度压缩空气储能系统出力,有效克服了压缩空气储能系统因为机械惯性,气动设备响应延迟等问题,提高压缩空气储能系统的响应速度,减少了蓄电池使用量,增强了系统的整体经济型。

【技术实现步骤摘要】

本专利技术涉及一种应用于微型风电系统的压缩空气混合储能系统及方法
技术介绍
压缩空气储能(CAES)是近年来提出的一种新型储能方式。系统利用多余的能量驱动压缩机将空气储存,需要时将高压空气释放驱动透平设备做功。因其具有效率较高,污染少、无相变损失等优点而备受关注,业已成为储能领域的研究热点。目前已有的研究大都聚焦于适用于风电场的大型压缩空气储能电站,而微型风电系统因为使用地点靠近用户且自身惯性较小,要求储能系统不但结构简单紧凑、噪声低,而且要有较快的动态响应速度,现有的大型压缩空气储能电站结构和控制策略无法直接移植到微型风电系统中。微型风力发电系统自身惯性较小且安装高度低,其受风能波动性的影响更大。特别是独立运行状态下,由于失去了大电网对电压和频率的支撑,要求储能系统必须能够快速响应以平抑风机的随机波动,保证系统稳定性和电能质量。目前单独的压缩空气储能系统因为机械惯性,气动设备响应延迟等难以满足其要求。
技术实现思路
本专利技术为了解决上述问题,提出了一种应用于微型风电系统的压缩空气混合储能系统及方法,本专利技术通过超前调度压缩空气储能系统出力,有效克服了压缩空气储能系统因为机械惯性,气动设备响应延迟等问题,提高压缩空气储能系统的响应速度,减少了蓄电池使用量,增强了系统的整体经济型。为了实现上述目的,本专利技术采用如下技术方案:一种应用于微型风电系统的压缩空气混合储能系统,包括风力发电机组,所述风力发电机组通过Boost变换器连接到直流母线,蓄电池通过双向DC/DC变换器也连接在直流母线上;压缩/膨胀设备与永磁同步发电/电动机同轴连接,并通过双向AC/DC变流器连接到直流母线;所述双向DC/DC变换器采用同步旋转dq坐标系PI控制,利用功率外环PI调节生成参考电流分量,再由电流内环反馈及补偿控制使dq轴电流跟踪参考值,气压反馈和补偿PI控制器用来控制涡旋机气体出口和气罐之间的电磁阀阀门开度,从而完成膨胀过程中涡旋机入口气体压力和流量的控制。所述风力发电机组采用定桨距永磁直驱式结构。所述压缩/膨胀设备为涡旋式压缩膨胀一体机,具体包括动涡盘和静涡盘,压缩模式时,动涡盘在原动机驱动下旋转,将气体从进气口吸入,依次进入压缩腔室和排气腔室,气体因腔室容积变化而压缩,最终压缩气体经中心气孔排出进入气罐。所述涡旋式压缩膨胀一体机膨胀模式时,旋转方向与压缩模式的旋转方向相反,压缩气体由中心气孔进入,在动静涡盘组成的封闭腔室内膨胀后排出,并通偏心主轴功率输出,完成气体内能和机械能的转化。所述Boost变换器后端的母线电压保持恒定,改变Boost变换器的占空比以改变风机转速,进而改变风机工作点,保证其工作在传统风力发电模式下的最大功率跟踪状态。其中,压缩/膨胀设备是同时能够完成压缩和膨胀功能的设备,为现有技术,其具体结构特征在此不再赘述。一种应用于微型风力压缩空气储能系统的实时负荷预测控制方法,包括以下步骤:(1)根据压缩空气储能风力发电系统结构,建立定桨距永磁直驱结构下的风力发电系统模型;(2)对系统中的压缩/膨胀设备进行特性分析,建立涡旋式复合机动态模型;(3)确定系统运转在压缩与膨胀模式下出工和系统部件的工作状态;(4)选取时间序列差分自回归模型,对系统负荷进行预测,以预测值作为前馈控制量,提前调度压缩空气储能系统运转,进行压缩和膨胀时的能量控制。所述步骤(1)中,风轮机获得的风能表示为: p ( t ) = 1 2 c p ( λ ) ρ A v 3 λ = rω m / v ]]>其中ρ为空气密度,r为风力机半径,v为风速大小,ωm为叶尖速,Cp为风能利用系数,A为常数。所述步骤(2)中,将压缩气体看作理想气体,综合考虑涡旋式复合机运行时流量、转矩与转速和气压之间的关系,考虑气体泄漏和摩擦损耗,建立涡旋式复合机动态模型。所述步骤(3)中,压缩/膨胀设备与磁同步发电/电动机直接相连,经双向DC/AC变流器接入直流母线,双向变流器采用同步旋转dq坐标系PI控制,利用功率外环PI调节生成参考电流分量,再由电流内环反馈及补偿控制使dq轴电流跟踪参考值。进一步的,所述步骤(3)中,d轴电流参考给定值id*设定为0。所述步骤(3)中,利用气压反馈和补偿PI控制器控制涡旋机气体出口和气罐之间的电磁阀阀门开度,完成膨胀过程中涡旋机入口气体压力和流量的控制。所述步骤(4)中,系统运行过程中,风机和负荷的功率差经时间序列差分自回归模型模块预测后得到压缩空气储能系统参考功率,经过压缩空气储能系统延迟时间后输出实际功率,未被压缩空气储能系统吸收的剩余功率由蓄电池补充。本专利技术的有益效果为:(1)相对于单独采用蓄电池的传统储能系统,本专利技术压缩空气承担主要的功率波动平抑任务,蓄电池用来补充压缩空气难以跟踪的波动,从而保证储能系统整体的响应速度并减低储能成本;(2)风力发电系统自身惯性较小且安装高度低,其受风能波动性的影响更大。特别是独立运行状态下,由于失去了大电网对电压和频率的支撑,要求储能系统必须能够快速响应以平抑风机的随机波动,保证系统稳定性和电能质量,本专利技术中采用蓄电池和压缩空气储能复合储能结构,相比单独的压缩空气储能结构,系统整体响应速度高;(3)针对气动系统的功率延迟大、响应滞后的问题,本专利技术根据风机和负载功率变化特点,提出基于ARIMA的短期负荷预测方法,提前调度压缩空气储能系统出力,提高了压缩空气储能系统的响应速度,降低了系统中蓄电池的容量和功率;(4)通过超前调度压缩空气储能系统出力,有效克服了压缩空气储能系统因为机械惯性,气动设备响应延迟等问题,提高压缩空气储能系统的响应速度,减少了蓄电池使用量,增强了系统的整体经济型。附图说明图1是本专利技术提出的微型压缩空气储能风电系统结构图图2是本专利技术中的压缩空气储能系统控制结构图图3是本专利技术中系统负荷预测流程图其中,1、风力发电机组,2、Boost变换器,3、蓄电池,4、双向DC/DC变换器,5、涡旋式压缩膨胀一体机,6、永磁同步发电/电动机,7、双向AC/DC变流器。具体实施方式:下面结合附图与实施例对本专利技术作进一步说明。本专利技术提出了一种应用于微型风电系统的压缩空气蓄电池复合储能系统,压缩空气承担主要的功率波动平抑任务,蓄电池用来补充本文档来自技高网...
一种应用于微型风电系统的压缩空气混合储能系统及方法

【技术保护点】
一种应用于微型风电系统的压缩空气混合储能系统,其特征是:包括风力发电机组,所述风力发电机组通过Boost变换器连接到直流母线,蓄电池通过双向DC/DC变换器也连接在直流母线上;压缩/膨胀设备与永磁同步发电/电动机同轴连接,并通过双向AC/DC变流器连接到直流母线;所述双向DC/DC变换器采用同步旋转dq坐标系PI控制,利用功率外环PI调节生成参考电流分量,再由电流内环反馈及补偿控制使dq轴电流跟踪参考值,气压反馈和补偿PI控制器用来控制涡旋机气体出口和气罐之间的电磁阀阀门开度,从而完成膨胀过程中涡旋机入口气体压力和流量的控制。

【技术特征摘要】
1.一种应用于微型风电系统的压缩空气混合储能系统,其特征是:包括风力发电机组,所述风力发电机组通过Boost变换器连接到直流母线,蓄电池通过双向DC/DC变换器也连接在直流母线上;压缩/膨胀设备与永磁同步发电/电动机同轴连接,并通过双向AC/DC变流器连接到直流母线;所述双向DC/DC变换器采用同步旋转dq坐标系PI控制,利用功率外环PI调节生成参考电流分量,再由电流内环反馈及补偿控制使dq轴电流跟踪参考值,气压反馈和补偿PI控制器用来控制涡旋机气体出口和气罐之间的电磁阀阀门开度,从而完成膨胀过程中涡旋机入口气体压力和流量的控制。2.如权利要求1所述的一种应用于微型风电系统的压缩空气混合储能系统,其特征是:所述压缩/膨胀设备为涡旋式压缩膨胀一体机,具体包括动涡盘和静涡盘,压缩模式时,动涡盘在原动机驱动下旋转,将气体从进气口吸入,依次进入压缩腔室和排气腔室,气体因腔室容积变化而压缩,最终压缩气体经中心气孔排出进入气罐。3.如权利要求1所述的一种应用于微型风电系统的压缩空气混合储能系统,其特征是:所述涡旋式压缩膨胀一体机膨胀模式时,旋转方向与压缩模式的旋转方向相反,压缩气体由中心气孔进入,在动静涡盘组成的封闭腔室内膨胀后排出,并通偏心主轴功率输出,完成气体内能和机械能的转化。4.如权利要求1所述的一种应用于微型风电系统的压缩空气混合储能系统,其特征是:所述Boost变换器后端的母线电压保持恒定,改变Boost变换器的占空比以改变风机转速,进而改变风机工作点,保证其工作在传统风力发电模式下的最大功率跟踪状态。5.一种应用于微型风力压缩空气储能系统的实时负荷预测控制方法,其特征是:包括以下步骤:(1)根据压缩空气储能风力发电系统结构,建立定桨距永磁直驱结构下的风力发电系统模型;(2)对系统中的压缩/膨胀设备进行特性分析,建立涡旋式复合机动态模型;(3)确定系统运转在压缩与膨胀模式下出工和系统部件的工作状态;(4)选取时间序列差分自回归模型,对系统负荷进行预测,以预测值作为前馈控制量,提前调度压缩空气储能系统运转,进行压缩和膨胀时的能量控制。6.如权利要求5所述的一种应用于微型风力压缩空气储能系统的实时负荷预测控制方法,其特征是:所述步骤(1)中,风轮机获得的风能表示为: p ( t ) ...

【专利技术属性】
技术研发人员:张承慧李珂田崇翼严毅叶宝森
申请(专利权)人:山东大学
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1