一种基于损伤力学非概率区间分析模型的金属疲劳裂纹全寿命预估方法技术

技术编号:13974215 阅读:102 留言:0更新日期:2016-11-11 03:29
本发明专利技术公开了一种基于损伤力学非概率区间分析模型的金属疲劳裂纹全寿命预估方法。该方法首先在损伤力学模型中选择一种损伤演化方程建立结构包含损伤信息的有限元分析列式,查询疲劳试验手册拟合得到损伤演化方程中的参数;然后结合损伤力学有限元法与区间有限元法,将初始损伤度与损伤参数看作区间不确定变量以表征疲劳寿命分散性;进一步建立结构的有限元分析模型,给定初始临界单元损伤度增量,不断迭代增加所有单元的损伤度,通过各个单元损伤度的大小判定单元破坏并重新赋予强度与刚度属性;最后当裂纹扩展达到临界裂纹长度后判定结构破坏,由损伤演化方程变式与区间顶点传播分析方法计算得出疲劳寿命范围。本发明专利技术更加精细化的预估了疲劳裂纹寿命。

【技术实现步骤摘要】

本专利技术涉及疲劳断裂和损伤力学领域,特别涉及考虑不确定性作用下裂纹扩展尺度对结构安全性能的定量表征以及基于损伤力学有限元与非概率区间有限元结合下的疲劳裂纹全寿命精细化分析。
技术介绍
随着科技的发展,结构的设计思想已经发生经历了静强度、动强度、疲劳强度和断裂强度的演变。自损伤力学产生以来,用损伤力学方法研究疲劳裂纹问题成为一种新的趋势。损伤力学是一门较系统的研究微缺陷以及这些缺陷对应力和应变状态影响的科学,是固体力学研究领域的一门新兴学科,其理论基础是固体力学和不可逆过程的热力学。这两个理论能够成功地用来解释材料性能,而无需详细讨论材料物理微结构的复杂性。预测构件疲劳损伤寿命的损伤力学计算方法从本质上分析疲劳裂纹的形成和扩展,发展和完善了疲劳断裂理论,在实际工程中应用很方便。然而,构件或者材料的疲劳裂纹扩展行为研究涉及了力学、材料、机械设计与加工工艺等诸多学科,影响疲劳裂纹扩展的因素也非常之多,包括裂纹的几何形态、初始裂纹长度、材料特性、裂纹扩展规律、扩展方向、构件的几何尺寸和载荷历程等。由于初始参数的分散性,应用数值方法预估疲劳裂纹扩展寿命的结果必然会有误差。建立一个包含上述各影响因素的疲劳裂纹分析模型,并且准确预测疲劳裂纹全寿命是一件困难的事情。工程结构的服役环境相对复杂,制造加工工艺及材料非均质性所造成的初始缺陷和损伤不可避免,并在未来长期服役过程中于结构内部不断发展、蔓延、传播,严重影响着结构的力学行为及使用安全。综合上述情况,为分析数值方法预测的精度,就很有必要精细化研究预测裂纹的全寿命。当前,随机建模及数值方法在不确定性分析领域发挥了重要作用,但用随机理论求解问题时,事先需要知道大量的试验信息确定模型输入参数的概率分布规律。在实际工程中,获取充足的试验数据往往代价昂贵。如此一来,信息的缺乏使得概率模型不能真实的描述客观实际,这在一定程度上限制了随机模型的应用。因此,使用非概率区间分析方法来表征参数的不确定信息,基于初始参数的不确定性,研究不确定性传播问题导致预测裂纹全寿命的影响程度,精细化裂纹全寿命预估方法具有显著的现实意义。
技术实现思路
本专利技术要解决的技术问题是:克服现有技术的不足,提供一种基于损伤力学非概率区间分析模型的金属疲劳裂纹全寿命预估方法。本专利技术充分考虑实际工程问题中普遍存在的不确定性因素,以提出的非概率区间顶点方法分析不确定性传播问题,所得到的裂纹全寿命范围符合真实情况,工程适用性更强。本专利技术采用的技术方案为:一种基于损伤力学非概率区间分析模型的金属疲劳裂纹全寿命预估方法,实现步骤如下:第一步:根据金属材料类别与构件所承受载荷形式选择一种损伤演化模型,单轴加载条件下损伤演化方程可表示为: d D d N = α p + 1 ( 1 2 E ) p + 1 ( 1 1 - D ) 2 p + 2 [ ( 1 - R ) q ( p + 1 ) σ M e 2 p + 2 - σ t h 0 2 p + 2 ( 1 - D ) ( 0.5 + β ) ( 2 p + 2 ) ] ]]>其中,D代表在0与1之间变化的单元标量损伤度,N代表应力循环次数即单元寿命,β、α和p代表材料的损伤力学参数,可由材料的疲劳性能曲线确定,E代表材料弹性模量,R代表循环载荷的应力比,σMe代表材料受到最大载荷时单元对应的等效应力,σth0为无初始损伤情况对应的应力门槛值;第二步:将损伤演化方程耦合传统有限元方法,得到给定损伤场时结构应力分析的损伤力学有限元分析列式: ( Σ e [ A e ] T [ K e ] [ A e ] - Σ e D e [ A e ] T [ K e ] [ A e ] ) { δ本文档来自技高网
...

【技术保护点】
一种基于损伤力学非概率区间分析模型的金属疲劳裂纹全寿命预估方法,其特征在于实现步骤如下:第一步:根据金属材料类别与构件所承受载荷形式选择一种损伤演化模型,单轴加载条件下损伤演化方程可表示为:dDdN=αp+1(12E)p+1(11-D)2p+2[(1-R)q(p+1)σMe2p+2-σth02p+2(1-D)(0.5+β)(2p+2)]]]>其中,D代表在0与1之间变化的单元标量损伤度,N代表应力循环次数即单元寿命,β、α和p代表材料的损伤力学参数,可由材料的疲劳性能曲线确定,E代表材料弹性模量,R代表循环载荷的应力比,σMe代表材料受到最大载荷时单元对应的等效应力,σth0为无初始损伤情况对应的应力门槛值;第二步:将损伤演化方程耦合传统有限元方法,得到给定损伤场时结构应力分析的损伤力学有限元分析列式:(Σe[Ae]T[Ke][Ae]-ΣeDe[Ae]T[Ke][Ae]){δ}={f}]]>其中,[Ae]为位移协调矩阵,[Ke]为单元刚度矩阵,De为单元损伤度,{δ}为总体位移列阵,{f}为载荷列向量;第三步:获取标准疲劳试验件的中值疲劳寿命数据拟合损伤演化方程中的损伤参量,将损伤演化方程在0到1上积分,对应一个单元破坏则是标准的S‑N曲线的寿命值,然后用最小二乘法拟合β、α和p;第四步:利用区间向量x∈xI=(ΔD,β,p,α)合理表征贫信息、少数据条件下的结构不确定性,这里ΔD代表临界单元的损伤度增量,于是有:xU=(ΔDU,βU,pU,αU)=(ΔDc+ΔDr,βc+βr,pc+pr,αc+αr)xL=(ΔDL,βL,pL,αL)=(ΔDc‑ΔDr,βc‑βr,pc‑pr,αc‑αr)其中,损伤力学参数β、α和p分别表示为区间变量,上标U代表参量的取值上界,上标L代表参量的取值下界,上标c代表中心值,上标r代表半径;第五步:建立有限元模型,施加边界条件,先计算初始损伤场均为零,即无损伤情况下的应力场,利用二次开发编写程序提取各个单元等效应力存储于数组;第六步:分析上一步提取得到的单元应力数组,由相对损伤度的最大值判断选择临界单元,表示如下:maxi∈[1,n][(dDdN)i/(1-Di)]]]>其中,表示单元的绝对损伤演化率;第七步:引入区间传播分析的顶点法,选择不确定参数的顶点上下限进行非概率不确定性传播分析,顶点法可表示为:U1=(ΔD‾,β‾,α‾,p‾)U2=(ΔD‾,β‾,α‾,p‾)U3=(ΔD‾,β‾,α‾,p‾)...U16=(ΔD‾,β‾,α‾,p‾)]]>其中,U1…U16代表不确定参数组合取值形式,ΔD,β,α,p分别代表输入参数的下限,分别代表输入参数的上限;第八步:给定临界单元损伤度增量ΔD,由损伤演化方程与临界损伤度增量计算所有单元的损伤度增量,将与前一步损伤场叠加得到的单元损伤场施加于有限元模型中进行带有损伤的应力分析,再提取单元等效应力存储于数组,并不断重复第六步直到判断临界单元的损伤度到1时即认为该单元破坏,并提取破坏单元长度与单元破坏寿命;第九步:结合损伤力学有限元与区间顶点传播分析方法,将每一步迭代破坏单元的弹性模量将为极小值,并计算破坏单元的总长度ai与材料的临界裂纹扩展长度ac比较判断结构破坏,当ai≤ac即停止计算输出寿命的上下限与N。...

【技术特征摘要】
1.一种基于损伤力学非概率区间分析模型的金属疲劳裂纹全寿命预估方法,其特征在于实现步骤如下:第一步:根据金属材料类别与构件所承受载荷形式选择一种损伤演化模型,单轴加载条件下损伤演化方程可表示为: d D d N = α p + 1 ( 1 2 E ) p + 1 ( 1 1 - D ) 2 p + 2 [ ( 1 - R ) q ( p + 1 ) σ M e 2 p + 2 - σ t h 0 ...

【专利技术属性】
技术研发人员:邱志平苏欢王磊王晓军孙佳丽
申请(专利权)人:北京航空航天大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1