一种微通道热管蒸发器制造技术

技术编号:13826320 阅读:77 留言:0更新日期:2016-10-13 02:10
本发明专利技术提供了一种微通道热管蒸发器,包括下联箱、旁通导气管、上联箱、集气管、连接短管、微通道扁管和翅片。集气管设置在上联箱的上方,并通过连接短管与上联箱连通;旁通导气管连通上联箱和下联箱,并且旁通导气管连接到下联箱内的上部气态工质聚集处;微通道扁管由多个矩形微通道管排列组成,多根微通道扁管设置在上联箱和下联箱之间,每根微通道扁管位于下联箱内的端部均设有通气缝隙,通气缝隙由矩形微通道管的端部分裂形成。本发明专利技术的结构能逐步分离并输送热管蒸发器上、下联箱中的气态工质,防止热管工质气化膨胀压力变化导致微通道内工质大幅振荡时气态工质被再次吸入换热通道内,使吸入的工质均为液态而提高蒸发器换热效率。

【技术实现步骤摘要】

本专利技术属于暖通空调、换热器系统设计与制造
,涉及一种基于微通道热管技术实现气液相分离的微通道热管蒸发器
技术介绍
在暖通空调与换热器工业设计领域,蒸发器一直是制约与影响系统整体性能的重要因素,如何提高蒸发器换热效能、减小换热器面积一直是领域内亟待解决与致力研究的重点与难点。与传统换热器相比,热管是一种具有高导热性能的传热组件,它通过在全封闭真空管壳内工质的蒸发与凝结来传递热量,具有极高的导热性、良好的等温性、可控制温度等优点。现有热管蒸发器中,由于换热过程中不可避免的气相与液相流体工质的混合,从一定程度上制约并影响了换热器的换热性能与效率。因此,解决如何实现热管蒸发器中的气态工质和液态工质的逐步分离,提高蒸发过程相变换热性能,实现高效率、设备结构紧凑简单的高性能热管换热器成为本领域技术人员迫切需要解决的技术难题。微通道技术由于结构紧凑,节能效果显著而日益引起广泛关注与研究。
技术实现思路
为了克服现有技术中存在的上述不足,本专利技术提供一种微通道热管蒸发器,能逐步分离热管蒸发器中的气态工质与液态工质,最大可能地提高换热效率。本专利技术解决其技术问题所采用的技术方案是:一种微通道热管蒸发器,该装置包括下联箱、旁通导气管、上联箱、集气管、连接短管、微通道扁管以及翅片。所述集气管设置在上联箱的上方,并通过连接短管与上联箱连通;所述旁通导气管连通上联箱和下联箱,并且所述旁通导气管连接到下联箱内的上部气态工质聚集处;所述微通道扁管由多个矩形微通道管排列组成,多根微通道扁管设置在上联箱和下联箱之间,每根微通道扁管位于下联箱内的端部均设有通气缝隙,通气缝隙由矩形微通道管的端部分裂形成。所述集气管的内径不小于5mm,最大不超过所述上联箱的内径。所述连接短管的数量为一根或多根,采用多根时,两根连接短管间的距离应为30mm~120mm。所述旁通导气管与下联箱连接的接口内径尺寸小于下联箱内径的一半。进一步地,所述通气缝隙为一个或多个。进一步地,所述通气缝的缝隙角度为30°~60°在热管蒸发器微通道管内,由于表面张力和受热气化的双重作用,液体工质吸热气化时会形成长度不一且交替存在的液柱和气柱。热管蒸发段内的工质吸热气化膨胀为气柱时的推动力会引起微通道内液注与气柱的上下大幅度脉动振荡。当气柱向下振荡时会使得气柱压入下联箱并积存在微通道扁管之间的空腔内,当积存量大时,微通道管内工质向上振荡时,积存的气体会被重新吸入微通道内形成气柱;当气柱向上振荡时,气、液工质会同时进入上联箱,若不能及时将气体工质分离出来,当振荡到吸入阶段时,微通道管将吸入气体而形成气柱。这部分气柱占据微通道内本应是液态工质的换热空间,相当于减小蒸发器的换热面积而降低蒸发器的换热效率。本专利技术通过在微通道换热器的下联箱内扁管设置通气缝隙与气体导出管道而实现气液分离并将气体工质导入上集气管,减少下联箱内气体工质积存量,使下联箱内的微通道入口浸于液体工质内,避免微通道内工质向上振荡时吸入气体工质,使吸入的工质均为液态,从而提高蒸发器换热效率。同时,上集气管装置仅以重力沉降原理通过气体与液体密度不同的而分离气相工质,不额外增加包括多孔膜材料,金属丝网等气液分离装置。本专利技术是根据工质在微通道换热器内气化的脉动机理,通过改变微通道蒸发器的部分结构来实现气液分离,装置不需增加多余部件,具有结构简单、换热效率提高显著和生产工艺简单等优点。本专利技术与现有技术相比,有益效果如下:(1)本专利技术采用微通道换热器作为热管蒸发器,根据重力、毛细力和气化膨胀作用等驱动原理,将热管蒸发器中气相与液相逐级分离,有效减少现有热管换热器振荡过程中气柱与液注的接触与反复掺混造成换热效率下降。(2)当换热过程中热管工质在微通道内上、下振荡时,仅液体工质被重新吸入微通道内形成液柱,实现减小气柱在蒸发器换热面积的占比,提高液柱在蒸发器换热面积而提高蒸发器的换热效率的目的。(3)本专利技术为实现高效换热性能、结构简单的热管蒸发器换热过程提供了一种可行的方法与方案。附图说明图1是本专利技术热管蒸发换热器结构图,1-下联箱,2-微通道扁管通气缝隙,3-旁通导气管,4-上联箱,5-集气管,6-联接短管,7-微通道扁管,8-翅片;图2为图1中a区域的局部放大图;图3为下联箱内微通道扁管管局部图,9-微通道管;图4单根微通道扁管示意图;图5热管蒸发器侧视图。具体实施方式下面结合附图对本专利技术进一步说明。本专利技术为一种热管蒸发器,蒸发器换热元件为微通道扁管。具体结构如图1所示,包括下联箱1、微通道扁管通气缝隙2、旁通导气管3、上联箱4、集气管5、连接短管6、微通道扁管7、翅片8。在上联箱4垂直正上方置有集气管5,集气管5内径不小于5mm,最大不超过上联箱4内径,这样既避免了毛细现象的产生,又便于气体的输送。集气管5和上联箱4之间由连接短管6连通,连接短管6的数量视蒸发器宽度和设计换热量而定,本实施例示意图中为5个。两根连接短管间6之间的距离应根据设计换热量在30~120mm,便于彻底的将上联箱的气态工质导入到集气管,又使得液态工质不会过多的在脉动膨胀过程中涌入集气管,并能够使涌入的液态工质快速回流至上联箱,集气管5的作用为收集上联箱4内的气态工质。在上联箱4和下联箱1之间设有旁通导气管3,旁通导气管3连接上联箱4和下联箱1,旁通导气管3下部的连接位置位于下联箱1上部气态工质聚集处,并且下部接口内径尺寸应小于下联箱1内径的一半以保证导出气体同时不过多带有液体,位置如图5所示。旁通导气管3的作用可以使下联箱1中的气态工质通过自身直接进入上部集气管5,和集气管5内的气态工质一同由蒸发器出口导出。在本实施例中,采用的微通道扁管7由数个矩形微通道扁管9组成,剖面图如图4所示。将扁管中的微通道管9以中间分界线分成两个部分(或多个部分),两个部分从中间分界处以一定角度(30°~60°)折向相反的方向,如图3所示,此时会形成一个缝隙,这样便于气态工质从缝隙中通过。该结构的作用是使存在于两个微通道扁管7之间的气态工质通过微通道扁管通气缝隙2进入到旁通导气
管3,随后直接导入集气管5。微通道管9中的气柱在运动过程中会进入上联箱4,上联箱4中的气态工质会通过接点进入集气管5。集气管5起到了收集并导出上联箱4气态工质的作用。本专利技术的装置通过逐步分离热管蒸发器中的气态工质和液态工质,最大可能地提高换热效率。本文档来自技高网
...
一种微通道热管蒸发器

【技术保护点】
一种微通道热管蒸发器,包括下联箱、旁通导气管、上联箱、集气管、连接短管、微通道扁管和翅片,其特征在于,所述集气管设置在上联箱的上方,并通过连接短管与上联箱连通;所述旁通导气管连通上联箱和下联箱,并且所述旁通导气管连接到下联箱内的上部气态工质聚集处;所述微通道扁管由多个矩形微通道管排列组成,多根微通道扁管设置在上联箱和下联箱之间,每根微通道扁管位于下联箱内的端部均设有通气缝隙,通气缝隙由矩形微通道管的端部分裂形成。

【技术特征摘要】
1.一种微通道热管蒸发器,包括下联箱、旁通导气管、上联箱、集气管、连接短管、微通道扁管和翅片,其特征在于,所述集气管设置在上联箱的上方,并通过连接短管与上联箱连通;所述旁通导气管连通上联箱和下联箱,并且所述旁通导气管连接到下联箱内的上部气态工质聚集处;所述微通道扁管由多个矩形微通道管排列组成,多根微通道扁管设置在上联箱和下联箱之间,每根微通道扁管位于下联箱内的端部均设有通气缝隙,通气缝隙由矩形微通道管的端部分裂形成。2.根据权利要求1所述的一种微通道热管蒸发器,其特征在于,所述集气管的内径不小于...

【专利技术属性】
技术研发人员:李奇贺张汉杨韵博华君叶褚红燕
申请(专利权)人:南京师范大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1