一种基于全景相机的单像自定位方法及系统技术方案

技术编号:13739603 阅读:82 留言:0更新日期:2016-09-22 15:22
本发明专利技术公开一种基于全景相机的单像自定位方法及系统,包括:获取全景影像中控制点坐标、全景相机系统的俯仰角和全景相机系统的翻滚角;利用控制点坐标、全景相机系统的俯仰角和翻滚角,计算得到控制点的局部极坐标;利用局部极坐标,计算得到控制点的局部空间坐标;获取全景相机系统的方向向量,计算全景相机系统在全局坐标系的航向角;利用航向角,获得旋转矩阵M;利用控制点的局部极坐标、局部空间坐标以及旋转矩阵M得到全景相机全局坐标。本申请的自定位方法运算量小、精度较高,可用于移动测量系统的实时自定位。

【技术实现步骤摘要】

本专利技术涉及定位领域,特别是涉及一种基于全景相机的单像自定位方法及系统
技术介绍
移动设备的自定位技术是近年来的研究热点,包括无人机航测、车载移动测量、机器人自主导航等多个领域都需要一种低成本、可靠、轻便的部件,从而使移动设备可以依靠这种部件较为精确地自主确定设备在环境中的位置,摆脱对GPS等外部导航仪器的依赖。目前市面上的机器人主要使用地面磁轨来进行导航及定位,近几年,基于激光的实时同步地图构建及定位技术(SLAM)开始应用于机器人导航及定位,从而使机器人可以不依靠地面磁轨便能够确定自身在环境中的位置。同时,基于视觉的机器人自定位技术也是最近几年的研究热点,然而由于视觉自定位技术需要环境中有足够的视觉特征点,因此视场角过小的相机会经常遇到视野内特征点不足的问题,导致相机无法进行自身定位。现有技术中磁导轨技术必须事先地面上布设磁性导轨,移动设备沿着导轨进行运动,缺点是铺设导轨工程量大、限制性高,只能沿着磁导轨运动。而组合导航技术中使用移动设备上的惯性导航以及里程计进行定位,缺点是惯性导航成本高,且定位误差随时间不断积累。还有,激光定位技术中使用移动设备上的横置激光雷达进行自身定位,缺点是激光雷达成本高,当机器人行进路线中出现障碍物时,由于机器人所扫描点云找不到匹配特征,因此会导致机器人无法定位。深度相机定位技术中使用移动设备上的深度相机进行自身定位,缺点是深度相机量测距离短,难以在空旷地区使用。双目相机定位技术中使用移动设备上的双目相机进行自身定位,缺点是相机视角小,当视野中无特征点时定位失效。
技术实现思路
本专利技术的目的是提供一种基于全景相机的单像自定位方法及系统,能够实现不用预先铺设磁性导轨、设备运动无限制、机器人前方出现障碍物时不影响自身定位、可以在空旷环境中使用、误差不随时间积累,且在定位的同时拍摄当前环境的全景照片,可以在事后对运动环境进行全面的分析以及了解。为实现上述目的,本专利技术提供了如下方案:一种基于全景相机的单像自定位方法,包括:获取全景影像中控制点坐标、全景相机系统的俯仰角和全景相机系统的翻滚角;利用所述控制点坐标、所述全景相机系统的俯仰角和翻滚角,计算得到所述控制点的局部极坐标;利用所述局部极坐标,计算得到所述控制点的局部空间坐标;获取所述全景相机系统的方向向量,计算所述全景相机系统在全局坐标系的航向角;利用所述航向角,获得旋转矩阵M;利用所述控制点的局部极坐标、局部空间坐标以及所述旋转矩阵M得到全景相机全局坐标。可选的,所述利用所述控制点坐标、所述全景相机系统的俯仰角和所述全景相机系统的翻滚角,所述得到所述控制点的局部极坐标具体为:根据公式计算控制点的局部极坐标;其中,θ,α为所述控制点的局部极坐标,x,y为全景影像中控制点坐标,col为列像素数,row为行像素数。可选的,所述利用所述局部极坐标,所述得到所述控制点的局部空间坐标具体为:根据公式计算得到所述控制点的局部空间坐标;其中,X,Y,Z为控制点局部空间坐标,H为全景相机系统中心距地面高度。可选的,所述获取方向向量,所述得到全局坐标系的航向角具体为:根据公式计算得到所述全景相机系统在全局坐标系的航向角;其中,V0=(0,1,0)为全局坐标系中的初始方向向量,AB为方向向量在以全景相机系统为中心的局部坐标系中的平行单位向量,A’,B’为向量AB在全景影像中的实际投影点。可选的,所述旋转矩阵M具体为: M = cosθ ′ - sinθ ′ 0 sinθ ′ cosθ ′ 0 0 0 1 . ]]>可选的,所述得到全景相机全局坐标具体为:根据公式O=P0+M·P,计算全景相机全局坐标;其中,P为所述控制点的局部极坐标,P0为所述控制点全局坐标,M为旋转矩阵。本申请还包括一种基于全景相机的单像自定位系统,包括:第一获取单元,用于获取全景影像中控制点坐标、全景相机系统的俯仰角和全景相机系统的翻滚角;第一计算单元,用于利用所述控制点坐标、所述全景相机系统的俯仰角和翻滚角,计算得到所述控制点的局部极坐标;第二计算单元,用于利用所述局部极坐标,计算得到所述控制点的局部空间坐标;第二获取单元,用于获取所述全景相机系统的方向向量,计算所述全景相机系统在全局坐标系的航向角;第三计算单元,用于利用所述航向角,获得旋转矩阵M;第三获取单元,用于利用所述控制点的局部极坐标、局部空间坐标以及所
述旋转矩阵M得到全景相机全局坐标。可选的,所述第一计算单元,用于根据公式计算控制点的局部极坐标;其中,θ,α为所述控制点的局部极坐标,x,y为全景影像中控制点坐标,col为列像素数,row为行像素数;所述第二计算单元,用于根据公式计算得到所述控制点的局部空间坐标;其中,X,Y,Z为控制点局部空间坐标,H为全景相机系统中心距地面高度。可选的,所述第二获取单元,用于根据公式计算得到所述全景相机系统在全局坐标系的航向角;其中,V0=(0,1,0)为全局坐标系中的初始方向向量,AB为方向向量在以全景相机系统为中心的局部坐标系中的平行单位向量,A’,B’为向量AB在全景影像中的实际投影点;所述第三计算单元,根据得到旋转矩阵。可选的,所述第三获取单元,用于根据公式O=P0+M·P,计算全景相机全局坐标;其中,P为所述控制点的局部极坐标,P0为所述控制点全局坐标,M为旋转矩阵。本专利技术提供一种基于单像量测的全景相机自定位方法:在仅使用一个全景相机(包括鱼眼全景相机或多镜头组合式全景相机)的情况下,通过识别所拍摄全景影像中至少1个地面控制点,根据全景相机距离地面的高度、地面控制点三本文档来自技高网
...

【技术保护点】
一种基于全景相机的单像自定位方法,其特征在于,包括:获取全景影像中控制点坐标、全景相机系统的俯仰角和全景相机系统的翻滚角;利用所述控制点坐标、所述全景相机系统的俯仰角和翻滚角,计算得到所述控制点的局部极坐标;利用所述局部极坐标,计算得到所述控制点的局部空间坐标;获取所述全景相机系统的方向向量,计算所述全景相机系统在全局坐标系的航向角;利用所述航向角,获得旋转矩阵M;利用所述控制点的局部极坐标、局部空间坐标以及所述旋转矩阵M得到全景相机全局坐标。

【技术特征摘要】
1.一种基于全景相机的单像自定位方法,其特征在于,包括:获取全景影像中控制点坐标、全景相机系统的俯仰角和全景相机系统的翻滚角;利用所述控制点坐标、所述全景相机系统的俯仰角和翻滚角,计算得到所述控制点的局部极坐标;利用所述局部极坐标,计算得到所述控制点的局部空间坐标;获取所述全景相机系统的方向向量,计算所述全景相机系统在全局坐标系的航向角;利用所述航向角,获得旋转矩阵M;利用所述控制点的局部极坐标、局部空间坐标以及所述旋转矩阵M得到全景相机全局坐标。2.根据权利要求1所述的基于全景相机的单像自定位方法,其特征在于,所述利用所述控制点坐标、所述全景相机系统的俯仰角和所述全景相机系统的翻滚角,所述得到所述控制点的局部极坐标具体为:根据公式计算控制点的局部极坐标;其中,θ,α为所述控制点的局部极坐标,x,y为全景影像中控制点坐标,col为列像素数,row为行像素数。3.根据权利要求1所述的基于全景相机的单像自定位方法,其特征在于,所述利用所述局部极坐标,所述得到所述控制点的局部空间坐标具体为:根据公式计算得到所述控制点的局部空间坐标;其中,X,Y,Z为控制点局部空间坐标,H为全景相机系统中心距地面高度。4.根据权利要求1所述的基于全景相机的单像自定位方法,其特征在于,所述获取方向向量,所述得到全局坐标系的航向角具体为:根据公式计算得到所述全景相机系统在全局坐标系的航向角;其中,V0=(0,1,0)为全局坐标系中的初始方向向量,AB为方向向量在以全景相机系统为中心的局部坐标系中的平行单位向量,A’,B’为向量AB在全景影像中的实际投影点。5.根据权利要求1所述的基于全景相机的单像自定位方法,其特征在于,所述旋转矩阵M具体为: M = cosθ ′ - sinθ ′ 0 sinθ ′ ...

【专利技术属性】
技术研发人员:钟若飞黄小川宫辉力
申请(专利权)人:首都师范大学南京泰司空间信息科技有限公司
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1