当前位置: 首页 > 专利查询>燕山大学专利>正文

一种板带轧机颤振的建模方法技术

技术编号:12148966 阅读:366 留言:0更新日期:2015-10-03 04:36
一种板带轧机颤振的建模方法,它主要包括如下步骤:(1)建立板带轧机“轧件-轧辊”耦合振动物理模型;(2)根据步骤(1)所建的耦合振动物理模型建立“轧件-轧辊”耦合振动数学模型:①建立所述耦合振动数学模型的摩擦因数模型;②建立辊缝轧件水平振动动力学平衡方程和建立轧辊垂直振动平衡方程;通过摩擦因数的耦合作用,对两部分振动方程进行联立得到“轧件-轧辊”耦合振动方程组。本发明专利技术快速、简便,能有效控制和预防断带和设备损坏事故。

【技术实现步骤摘要】
一种板带轧机颤振的建模方法
本专利技术属于冶金轧制金属领域,特别涉及一种抑制板带轧机颤振的方法。技术背景我国是钢铁生产和消耗大国,截止到2014年,我国年粗钢产量8.2亿吨,超过世界粗钢产量的50%,但是,据相关数据资料表明,在所有的钢材产品中,冷轧薄板和冷轧带钢仍然是国内自给率和占有率最低的产品,冷轧带钢的产量占钢材产量的比例远远落后于世界上的发达国家,国内冷轧技术的落后成为制约冷轧钢材生产的关键因素。轧机振动特别是轧机的垂直振动,是冷轧带钢产品生产效率低下问题的关键所在,严重影响了轧制产品的质量和轧制速度的提高。轧机的垂直振动一方面在带钢产品表面形成明暗相间的条纹、增加板带厚度误差、影响产品质量;另一方面在轧辊表面产生印痕、加速辊面磨损、缩短换辊周期、增加设备运行维护的工作量和费用;轧机的剧烈振动甚至有可能造成断带或设备损坏事故,严重威胁生产安全并造成巨大的经济损失。然而轧机的颤振并不是单一结构作用所导致,而是多元结构的非线性因素相互耦合引起的,对冷连轧机耦合振动方面的深入研究是解决这一难题的关键所在。针对轧制过程中存在的轧机颤振的问题,国内研究人员做了许多工作。专利号为CN201210127382.5、专利技术名称为“采用惯性飞轮抑制高速轧机颤振的装置”的中国专利,通过添加前置减振装置和后置减振装置,一定程度上抑制了轧机振动;专利号为CN201310546825.9、专利技术名称为“针对高速冷轧机第三倍频程颤振的故障诊断及反馈系统”,的中国专利,将检测到的轧辊振动信号反馈到板材张力和主传动速度控制系统,从而降低轧机振动的能量;专利号为CN201110116180.6、专利技术名称为“一种轧机辊系振动抑制装置”的中国专利,通过控制液压缸的振动来对轧机轴承座的振动进行抵消,从而减缓了轧机的颤振。这些模型的优点是结构简单,对轧机颤振的控制易于实现。然而轧机内部存在着复杂的耦合关系,工作过程中各单元相互影响,再加上轧机颤振具有突发性,发散性等特点,单靠外加抑振装置不足以控制轧机的振动,对轧机振动内部机理的深入研究是解决轧机颤振的根本所在。
技术实现思路
本专利技术的目的在于提供一种快速、简便的板带轧机颤振的建模方法。本专利技术主要是基于轧件工作过程中发生的水平振动来研究轧机的颤振,建立了板带轧机颤振同轧件水平振动的耦合模型,得出轧辊颤振同轧件水平位移的关系,从而抑制轧机颤振。本专利技术的板带轧机颤振的建模方法,主要包括以下步骤:(1)建立板带轧机“轧件-轧辊”耦合振动物理模型。耦合振动物理模型是指轧件水平振动和轧辊垂直振动之间的耦合。轧制过程中,接触区轧件受工作辊的挤压而产生弹塑性变形,导致轧件内部形成前滑区和后滑区,将前后滑区轧件的弹塑性变形等效为弹簧模型,将前后滑区轧件的变形抗力视为阻尼器模型,从而建立关于轧件在水平方向的弹簧阻尼器模型;利用集中质量法将上工作辊和上支撑辊等效为一个质量单元,将轧辊等效质量单元与机架上横梁间的挤压变形等效为弹簧模型,将轧辊等效质量单元的变形抗力等效为阻尼器模型,从而建立关于轧辊在垂直方向的弹簧-阻尼器物理模型;根据辊缝摩擦因数的耦合作用,将轧件的水平振动和轧辊的垂直振动行为进行耦合,建立板带轧机“轧件-轧辊”耦合振动物理模型。(2)根据步骤(1)所建的耦合振动物理模型建立“轧件-轧辊”耦合振动数学模型。数学模型包括:辊缝摩擦因数模型,动力学平衡方程组。①建立所述耦合振动数学模型的辊缝摩擦因数模型:辊缝摩擦因数的变化主要与变形区油膜厚度有关,且近似地可用Roberts摩擦因数公式计算。辊缝摩擦因数表示为:式中K1和K2为摩擦特性系数,根据Roberts.W.L的统计型公式,K1的取值应该接近于0.5,K2的取值应界于0.0005~0.002之间;D为工作辊直径;Δh为轧件变形量;其中v0表示稳态轧制速度,为辊缝间轧件的水平振动速度。因为所以由泰勒展开将Roberts公式简化为:式中a1,a2,a3均为大于零的常数;因为,且H-h>>|2y|;所以可以近似得到:带入简化后的Roberts公式得到辊缝摩擦因数的表达式为:其中b1~b6均为大于零的待定常数;H为轧件入口厚度;h为轧件出口厚度;y为轧机辊系的振动位移;②基于广义耗散的拉格朗日原理,对辊缝轧件和轧机辊系建立动力学平衡方程。具体包括以下步骤:a、建立辊缝轧件水平振动动力学平衡方程由于在冷轧过程中轧辊的接触区弧长近似可看为变形区轧件的宽度,即轧辊与轧件的接触面近似为平面,因此可以忽略轧件受到的摩擦力在垂直方向上的分力,在此基础上构造轧件水平振动的动力学平衡方程:式中,m为接触区轧件质量;F为轧制压力;μ为辊缝摩擦因数;考虑到前后滑区轧件结构和振动特性的对称性,为简化计算步骤,近似认为前后滑区轧件的等效刚度相等,前后滑区轧件的等效阻尼相等,即,kb=kf,cb=cf,并分别用字母k和c表示;其中,kf,cf分别表示前滑区轧件的等效刚度和等效阻尼,kb,cb分别表示后滑区轧件的等效刚度和等效阻尼。b、建立轧辊垂直振动平衡方程利用集中质量法将上工作辊和上支撑辊等效为一个质量单元,将轧辊等效质量单元与机架上横梁间的挤压变形等效为弹簧模型,将轧辊等效质量单元的变形抗力等效为阻尼器模型,建立垂直方向的弹簧-阻尼器物理模型。根据广义耗散的拉格朗日原理,轧辊在垂直方向上的动力学平衡方程为:考虑轧机结构和振动特性的对称性,m1=m2;c1=c2;k1=k2;y1=-y2;为简化分析步骤,就轧机上部辊系进行分析,且令,m1=M;c1=C;k1=K;对轧机上部辊系等效质量块构造垂直方向的动力学平衡方程:式中M为上部辊系的等效质量;K为上部辊系与机架上横梁间的等效刚度;C为上部辊系与机架上横梁间的等效阻尼;F*为轧辊受到的外部扰动力。c、通过辊缝摩擦因数的耦合作用,对两部分振动方程进行联立得到“轧件-轧辊”耦合振动方程组:本专利技术与现有技术相比具有如下优点:1、对四辊冷轧机模型只分析上部辊系,且将上工作辊和上支承辊等效为一个质量块模型,使计算过程和分析步骤大大简化。2、所建立的动力学平衡方程都是基于广义耗散的拉格朗日原理,方程具有结构简单的特点,给定输入参数,可以很快计算出结果,具有很好的响应速度。3、轧件的水平振动和轧机颤振之间相互影响,二者作为对方的外部扰动,不断刺激着对方的振动朝着发散的方向发展,对板带材的质量和轧机设备存在安全隐患。将轧件的水平振动作为影响轧机颤振的因素来考虑,可以得出二者耦合振动关系曲线,能有效控制和预防断带和设备损坏事故。附图说明:图1是本专利技术的轧件在水平方向的弹簧-阻尼器物理模型图;图2是本专利技术的“轧件-轧辊”耦合振动物理模型图;图3是本专利技术实施例中F=8×106N时“轧件水平位移-轧辊垂直位移”仿真曲线图;图4是本专利技术实施例中F=8×107N时“轧件水平位移-轧辊垂直位移”仿真曲线图;图5是本专利技术实施例中K=2.08×1011时轧件水平振动相位图;图6是本专利技术实施例中K=2.08×109时轧件水平振动相位图。具体实施方式按照图1所示的轧件在水平方向的弹簧-阻尼器物理模型图中,将前后滑区轧件的弹塑性变形等效为弹簧模型,将前后滑区轧件的变形抗力视为阻尼器模型,从而建立轧件在水平方向的弹簧阻尼器物理模型;图中kf,cf分别表示前滑本文档来自技高网
...
一种板带轧机颤振的建模方法

【技术保护点】
一种板带轧机颤振的建模方法,其特征在于:它包括以下步骤:(1)建立板带轧机“轧件‑轧辊”耦合振动物理模型耦合振动物理模型是指轧件水平振动和轧辊垂直振动之间的耦合,轧制过程中,接触区轧件受工作辊的挤压而产生弹塑性变形,导致轧件内部形成前滑区和后滑区,将前后滑区轧件的弹塑性变形等效为弹簧模型,将前后滑区轧件的变形抗力视为阻尼器模型,从而建立关于轧件在水平方向的弹簧阻尼器模型;利用集中质量法将上工作辊和上支撑辊等效为一个质量单元,将轧辊等效质量单元与机架上横梁间的挤压变形等效为弹簧模型,将轧辊等效质量单元的变形抗力等效为阻尼器模型,从而建立关于轧辊在垂直方向的弹簧‑阻尼器物理模型;根据辊缝摩擦因数的耦合作用,将轧件的水平振动和轧辊的垂直振动行为进行耦合,建立板带轧机“轧件‑轧辊”耦合振动物理模型;(2)根据步骤(1)所建的耦合振动物理模型建立“轧件‑轧辊”耦合振动数学模型;数学模型包括:摩擦因数模型,动力学平衡方程组;①建立所述耦合振动数学模型的摩擦因数模型:摩擦因数的变化主要与变形区油膜厚度有关,由Roberts摩擦因数公式计算。摩擦因数表示为:μ=ΔhD[0.5+(K1-0.5)e-K2v0e-K2x·]]]>式中K1和为K2摩擦特性系数;D为工作辊直径;Δh为轧件变形量;其中v0表示稳态轧制速度,为辊缝间轧件的水平振动速度;∵∴由泰勒展开将Roberts公式简化为:μ≈ΔhD[0.5+(K1-0.5)e-K2v0(1-K2x·+K22x·22)]=Δh(a1-a2x·+a3x·2)]]>式中a1,a2,a3均为大于零的常数;∵Δh=H-h-2y=(H-h)(1-2yH-h)]]>H‑h>>|2y|∴Δh≈H-h(1-2yH-h)]]>μ=H-h(1-2yH-h)(a1-a2x·+a3x·2)=(b1-b2x·+b3x·2)-(b4-b5x·+b6x·2)y]]>其中b1~b6均为大于零的待定常数。H为轧件入口厚度;h为轧件出口厚度;y轧机辊系的振动位移;②基于广义耗散的拉格朗日原理,对辊缝轧件和轧机辊系建立动力学平衡方程;具体包括以下步骤:a、建立辊缝轧件水平振动动力学平衡方程由于在冷轧过程中轧辊的接触区弧长近似可看为变形区轧件的宽度,即轧辊与轧件的接触面近似为平面,因此可以忽略轧件受到的摩擦力在垂直方向上的分力,在此基础上构造轧件水平振动的动力学平衡方程:mx··+2cx·+2kx=2μF]]>式中,m为接触区轧件质量;F为轧制压力;μ为辊缝摩擦因数;考虑到前后滑区轧件结构和振动特性的对称性,为简化计算步骤,近似认为前后滑区轧件的等效刚度,等效阻尼相等,即,kb=kf,cb=cf,并分别用字母k和c表示;b、建立轧辊垂直振动平衡方程利用集中质量法将上工作辊和上支撑辊等效为一个质量单元,将轧辊等效质量单元与机架上横梁间的挤压变形等效为弹簧模型,将轧辊等效质量单元的变形抗力等效为阻尼器模型,建立垂直方向的弹簧‑阻尼器物理模型;根据广义耗散的拉格朗日原理,轧辊在垂直方向上的动力学平衡方程为:m1y··1+c1y·1+k1y1=F+F*m2y··2+c2y·2+k2y2=-F-F*]]>考虑轧机结构和振动特性的对称性,m1=m2;c1=c2;k1=k2;y1=‑y2;为简化分析步骤,就轧机上部辊系进行分析,且令:m1=M;c1=C;k1=K;对轧机上部辊系等效质量块构造垂直方向的动力学平衡方程:My··+Cy·+Ky=F+F*]]>式中M为上部辊系的等效质量;K为上部辊系与机架上横梁间的等效刚度;C为上部辊系与机架上横梁间的等效阻尼;F*为轧辊受到的外部扰动力;c、通过摩擦因数的耦合作用,对两部分振动方程进行联立得到“轧件‑轧辊”耦合振动方程组:My··+Cy·+Ky=F+F*mx··+2cx·+2kx=2[(b1-b2x·+b3x·2)-(b4-b5x·+b6...

【技术特征摘要】
1.一种板带轧机颤振的建模方法,其特征在于:它包括以下步骤:(1)建立板带轧机“轧件-轧辊”耦合振动物理模型耦合振动物理模型是指轧件水平振动和轧辊垂直振动之间的耦合,轧制过程中,接触区轧件受工作辊的挤压而产生弹塑性变形,导致轧件内部形成前滑区和后滑区,将前后滑区轧件的弹塑性变形等效为弹簧模型,将前后滑区轧件的变形抗力视为阻尼器模型,从而建立关于轧件在水平方向的弹簧阻尼器模型;利用集中质量法将上工作辊和上支撑辊等效为一个质量单元,将轧辊等效质量单元与机架上横梁间的挤压变形等效为弹簧模型,将轧辊等效质量单元的变形抗力等效为阻尼器模型,从而建立关于轧辊在垂直方向的弹簧-阻尼器物理模型;根据辊缝摩擦因数的耦合作用,将轧件的水平振动和轧辊的垂直振动行为进行耦合,建立板带轧机“轧件-轧辊”耦合振动物理模型;(2)根据步骤(1)所建的耦合振动物理模型建立“轧件-轧辊”耦合振动数学模型;数学模型包括:辊缝摩擦因数模型,动力学平衡方程组;①建立所述耦合振动数学模型的辊缝摩擦因数模型:辊缝摩擦因数的变化主要与变形区油膜厚度有关,由Roberts摩擦因数公式计算;辊缝摩擦因数表示为:式中K1和为K2摩擦特性系数;D为工作辊直径;Δh为轧件变形量;其中v0表示稳态轧制速度,为辊缝间轧件的水平振动速度;因为所以由泰勒展开将Roberts公式简化为:式中a1,a2,a3均为大于零的常数;因为,且H-h>>|2y|;所以可以近似得到:带入简化后的Roberts公式得到辊缝摩擦因数的表达式为:其中b1~b6均为大于零的待定常数;H为轧件入口厚度;h为轧件出口厚度;y为轧机辊系...

【专利技术属性】
技术研发人员:刘彬姜甲浩闻岩刘飞王美琪李鹏
申请(专利权)人:燕山大学
类型:发明
国别省市:河北;13

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1