一种基于星上量子光源和反射镜的星间测距方法技术

技术编号:10243843 阅读:120 留言:0更新日期:2014-07-23 17:38
一种基于星上量子光源和反射镜的星间测距方法,量子光源和量子测量设备安装在用户星上,用于产生和发射纠缠态光子脉冲信号,反射镜和指向机构安装在信标星上,用于将接收到的纠缠态光子脉冲信号反射至用户星,用户星通过测量发射纠缠态光子脉冲信号和反射纠缠态光子脉冲信号的到达时间之差,实现用户星和信标星之间的高精度距离测量。本发明专利技术所述方法可用于实现基于星间距离测量的星座卫星自主导航任务,有助于降低卫星对地面测控的依赖程度,增强星座系统在紧急情况下的自主生存能力。

【技术实现步骤摘要】
【专利摘要】,量子光源和量子测量设备安装在用户星上,用于产生和发射纠缠态光子脉冲信号,反射镜和指向机构安装在信标星上,用于将接收到的纠缠态光子脉冲信号反射至用户星,用户星通过测量发射纠缠态光子脉冲信号和反射纠缠态光子脉冲信号的到达时间之差,实现用户星和信标星之间的高精度距离测量。本专利技术所述方法可用于实现基于星间距离测量的星座卫星自主导航任务,有助于降低卫星对地面测控的依赖程度,增强星座系统在紧急情况下的自主生存能力。【专利说明】—种基于星上量子光源和反射镜的星间测距方法
本专利技术涉及基于星上量子光源和反射镜的星间测距方法,属于卫星自主导航

技术介绍
随着航天任务不断增多,以及卫星星座系统在经济、军事上的广泛应用,国民经济及国防事业对航天器导航和控制系统提出了更高的要求,提高星座卫星的自主导航能力已成为迫切需求,实现全部或部分自主化是新一代卫星星座系统的发展趋势。实现星座卫星自主导航不仅可以降低对地面人力、物力和设备的需求,降低航天计划的成本,更重要的是当卫星与地面测控系统的信息传输发生中断或阻塞时,提高卫星的自主生存能力;此外,还可以缓解因国土有限造成的地面站布局困难,适应未来航天任务发展需要。当前星座(如全球定位系统GPS)卫星自主导航主要依赖基于距离测量的方法,传统无线电链路是星间测距的主要实现方式。但是,建立在经典理论基础上的传统无线电测距方式,其发展有着不可逾越的极限,限制了测量精度和安全性的进一步提高。一方面,传统无线电测距方式的测量精度受到信号发射功率和带宽的限制;另一方面,存在战时易受到敌方干扰的问题,如何在战场对抗环境下发挥自主导航系统的作用是亟待解决的问题。基于星上量子光源和反射镜的星间测距方法通过纠缠态光子脉冲这一新型信号形式来提高星间距离测量精度。这一测量方式利用了量子力学中的量子纠缠特性,使得光子脉冲具有强相关性和高密集程度,这些脉冲能够以近似相同的速率传播并且成束到达,从而增强了信号,为星间距离的实时精确测量和进一步的高精度自主导航定位提供了信号基础。根据量子定位原理,采用与无线电测距相似的方式,利用纠缠态光子脉冲信号取代电磁波进行星间距离测量,能够达到更高精度,并且有助于解决信号传输的安全性问题,是一种理想的测量方式。一方面,基于传统无线电信号的测距精度受到可利用功率及带宽的限制,利用量子纠缠特性,能够突破功率和带宽对测距精度的限制,利用较弱的信号实现高精度测量。另一方面,根据量子力学理论中有关量子态的测不准原理以及不可克隆原理,参与测量的信标星和目标星之外的第三方难以对量子测距信息进行截获和欺骗,能够保障信号传输的安全性,这一特点使其适用于具有高可靠性要求的军事系统。
技术实现思路
本专利技术的技术解决问题是:克服现有技术的不足,针对传统无线电测距方式在精度和安全性方面存在问题,提出,通过用户星上的量子光源产生具有纠缠态光子脉冲信号,通过信标星信号反射,在用户星上实现干涉测量,获得用户星和信标星之间的距离观测量。相对于传统无线电测距方式,本专利技术所述方法的优势在于测量精度高,信号传输安全性高,且测量精度不受星间时钟偏差影响。本专利技术的技术解决方案是:基于星上量子光源和反射镜的星间测距方法,步骤如下:,步骤如下:(I)在用户星上配置量子光源和量子测量设备,在信标星上配置反射镜和指向机构;(2)用户星上的量子光源产生纠缠态光子脉冲信号,之后送入量子测量设备中,量子测量设备将量子光源产生的单光束分解为双光束,其中一路纠缠态光子脉冲信号由用户星传送给信标星;信标星上的反射镜通过指向机构对准用户星,传送给信标星的纠缠态光子脉冲信号经信标星上的反射镜反射后,再传送回用户星,被量子测量设备接收;(3)量子测量设备对两路纠缠态光子脉冲信号进行干涉测量,获得光子脉冲到达时间差,从而得到用户星和信标星之间的距离观测量。所述量子光源通过泵浦激光入射非线性晶体的方式实现。所述量子测量设备包括分束器、延迟控制器、第一光子探测器、第二光子探测器和符合测量单元;量子光源产生纠缠态光子脉冲信号通过分束器分成两路,两路纠缠态光子脉冲信号经由不同的光路到达光子探测器,并送入符合测量单元进行同步检测;一路传送给信标星,通过信标星上的反射镜反射后传送回来,被第一光子探测器接收之后送入符合测量单元;另一路通过时间延迟控制器之后送入第二光子探测器,再进入符合测量单元;时间延迟控制器使得两路纠缠态光子脉冲信号实现同步,通过统计时间延迟控制器调整的延迟时间,得到两路纠缠态光子脉冲信号到达光子探测器的时间之差,从而得到用户星和信标星之间的距离。用户星和信标星之间的距离观测量=(光子脉冲到达时间差X光速)/2,即光子脉冲到达时间差与光速的乘积即为距离观测量值的两倍。本专利技术与现有技术相比的有益效果是:相对传统无线电测距方式,采用基于星上量子光源和反射镜的星间测距方法测量精度更高,信号传输安全性高,不易被敌方盗用;并且,采用本专利技术所述方法,纠缠态光子脉冲信号的产生和测量在同一颗卫星上进行,星间距离测量精度不受用户星和信标星之间的时钟偏差的影响。【专利附图】【附图说明】图1为基于星上量子光源和反射镜的星间测距示意图;图2为纠缠态光子脉冲信号干涉测量方法框图;图3为基于星间测距信息的自主导航位置估计误差曲线。【具体实施方式】下面结合附图对本专利技术的【具体实施方式】进行进一步的详细描述。当前星座为学那个自主导航主要依赖基于星间距离测量的方法,如GPS卫星上配备的自主导航系统利用卫星之间的无线电测距信息进行位置修正,能够在与地面控制中心联络中断的情况下自主工作一段时间。为了解决传统星间测距方式在测量精度和安全性方面存在的问题,本专利技术提出基于星上量子光源和反射镜的星间测距方法,通过纠缠态光子这一新型信号形式来实现高精度高安全性要求。在此基础上,应用基于相对测量的绝对定轨原理,结合高精度轨道动力学模型和导航滤波算法,可以实现星座卫星高精度自主导航。本专利技术提出,如图1所示,步骤如下:(I)在用户星上配置量子光源和量子测量设备,在信标星上配置反射镜和指向机构;用户星上配置的量子光源通过泵浦激光入射非线性晶体的方式实现,量子测量设备包括分束器、延迟控制器、两个光子探测器和符合测量单元;信标星上配置的反射镜安装在两轴指向机构上,用于将接收到的纠缠态光子脉冲信号发射到用户星,指向机构用于将发射光束的指向对准用户星。(2)用户星上的量子光源产生纠缠态光子脉冲信号,通过分束器将量子光源产生的单光束分解为双光束,其中一路纠缠态光子脉冲信号由用户星传送给信标星;信标星上的反射镜通过指向机构对准用户星,传送给信标星的纠缠态光子脉冲信号经信标星上的反射镜反射后,再传送回用户星,用于与另外一路纠缠态光子脉冲信号进行干涉测量;两路纠缠态光子脉冲信号的干涉测量过程如图2所示:量子光源产生纠缠态光子脉冲信号通过分束器分成两路,两路纠缠态光子脉冲信号经由不同的光路到达光子探测器,并送入符合测量单元进行同步检测;一路传送给信标星,通过信标星上的反射镜反射后传送回来,被第一光子探测器接收之后送入符合测量单元;另一路通过时间延迟控制器之后送入第二光子探测器,再进入符合测量单元;时间延迟控制器使得两路纠缠态光子脉冲信号实现同步,通过统计时间延迟控制器调整本文档来自技高网
...

【技术保护点】
一种基于星上量子光源和反射镜的星间测距方法,其特征在于步骤如下:(1)在用户星上配置量子光源和量子测量设备,在信标星上配置反射镜和指向机构;(2)用户星上的量子光源产生纠缠态光子脉冲信号,之后送入量子测量设备中,量子测量设备将量子光源产生的单光束分解为双光束,其中一路纠缠态光子脉冲信号由用户星传送给信标星;信标星上的反射镜通过指向机构对准用户星,传送给信标星的纠缠态光子脉冲信号经信标星上的反射镜反射后,再传送回用户星,被量子测量设备接收;(3)量子测量设备对两路纠缠态光子脉冲信号进行干涉测量,获得光子脉冲到达时间差,从而得到用户星和信标星之间的距离观测量。

【技术特征摘要】

【专利技术属性】
技术研发人员:熊凯魏春岭何英姿
申请(专利权)人:北京控制工程研究所
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1