位置检测器制造技术

技术编号:10177205 阅读:104 留言:0更新日期:2014-07-02 16:53
本发明专利技术公开了一种位置检测器(10),其具有用于提供检测范围(θfs)的间隙(30)。间隙具有在间隙的端部处大于中心处的间隙宽度。因此,当与沿相对运动的方向具有恒定的间隙宽度的间隙(30)相比,分别流动通过间隙(30)的端部处或间隙(30)的端部周围的位置的溢磁通的量和直路磁通的量减少。即,穿过位于间隙(30)的每个纵向端部的霍尔元件(54)的磁通的密度减小。因此,在间隙(30)的端部处或在间隙(30)的端部周围,霍尔元件(54)检测的磁通密度的变化率减小并改善了来自霍尔元件(54)的输出信号的线性。

【技术实现步骤摘要】
【专利摘要】本专利技术公开了一种位置检测器(10),其具有用于提供检测范围(θfs)的间隙(30)。间隙具有在间隙的端部处大于中心处的间隙宽度。因此,当与沿相对运动的方向具有恒定的间隙宽度的间隙(30)相比,分别流动通过间隙(30)的端部处或间隙(30)的端部周围的位置的溢磁通的量和直路磁通的量减少。即,穿过位于间隙(30)的每个纵向端部的霍尔元件(54)的磁通的密度减小。因此,在间隙(30)的端部处或在间隙(30)的端部周围,霍尔元件(54)检测的磁通密度的变化率减小并改善了来自霍尔元件(54)的输出信号的线性。【专利说明】位置检测器
本公开总体涉及一种用于对检测对象的位置进行检测的位置检测器。
技术介绍
通常,磁性式位置检测器对检测对象的位置相对于参照部分的变化进行检测。例如,专利文献I (即,第JP-A-H08-292004号日本专利公开)中所公开的位置检测器被构造成(i)使用两个磁体和两个磁轭形成闭合磁路。位置检测器还具有设置在两个磁轭之间的间隙内的闭合磁路内部的磁通密度检测器。两个磁轭均具有平板形状,并且两个磁轭之间的间隙的宽度沿磁轭的纵向方向并且在两个磁轭的整个纵向长度上的所有位置处是恒定的。两个平板形状的磁轭通常束缚或者把两个磁体夹在中间。即,两个磁体中的一个磁体位于每个磁轭的第一端之间,并且两个磁体中的另一磁体位于每个磁轭的第二端之间。从一个磁体的N极流出的磁通被划分成三种类型,即:返回磁通,流动通过两个磁轭中的一个并从一个磁体流向另一磁体;溢磁通(spill magnetic flux),从一个磁轭流入两个磁轭之间的间隙,然后流向另一磁轭;直接磁通,没有穿过任何磁轭地直接流入两个磁轭之间的间隙,然后流向S极。磁通密度检测器检测在此流动的两种磁通,即,溢磁通和直接磁通中的任何一个或者两者。穿过磁通密度检测器的磁通的密度根据磁通密度检测器相对于磁轭的位置而变化。位置检测器基于由磁通密度检测器检测的磁通的密度对检测对象的位置进行检测。在专利文件I公开的位置检测器中,穿过磁通密度检测器的磁通的密度由于受到流入两个磁轭之间的间隙的端部的直接磁通的影响而急剧变化。因此,当磁通密度检测器在间隙的中心部分或在间隙的中心部分周围相对于两个磁轭运动时,观察到检测对象的位置和来自磁通密度检测器的输出信号之间的关系(即,位置-输出的相互关系)为具有线性关系,但是当磁通密度检测器在间隙的端部或在间隙端部周围相对于两个磁轭运动时,该位置-输出的相互关系偏离这种线性关系。换言之,来自磁通密度检测器的输出信号不足以为线性。
技术实现思路
本公开的一目标是提供一种具有输出线性改进的信号的磁通密度检测器的位置检测器。在本公开的一方面中,位置检测器检测检测对象相对于参照部件的位置。位置检测器包括设置在参照部件或检测对象中的一个上的第一磁通传输部件。第一磁通传输部件具有第一端和第二端,并且第二磁通传输部件设置成限定第一磁通传输部件和第二磁通传输部件之间的间隙。第二磁通传输部件具有第一端和第二端。第一磁通产生器位于第一磁通传输部件的第一端和第二磁通传输部件的第一端之间。第二磁通产生器位于第一磁通传输部件的第二端和第二磁通传输部件的第二端之间。磁通密度检测器位于间隙内,设置在参照部件或检测对象中的另一个上,并根据穿过磁通密度检测器的磁通的密度输出信号。具体地讲,在本公开中,当假设:间隙的间隙宽度由沿着第一磁通传输部件和第二磁通传输部件之间的垂直方向对间隙的横向测量限定,相对运动的方向被限定为磁通密度检测器相对于第一磁通传输部件的运动的方向,和运动的范围被限定为磁通密度检测器在间隙内的运动的范围,则沿相对运动的方向在磁通密度检测器的运动范围的每个端部位置处的间隙宽度大于沿相对运动的方向在磁通密度检测器的运动范围的中心处的间隙宽度。因此,相对于沿相对运动的整个方向具有恒定间隙宽度的位置检测器相比,在间隙的每个端部位置处流动的溢磁通和直路磁通减少。即,当磁通密度检测器位于间隙的每个纵向端部处时,穿过磁通密度检测器的磁通的密度减小。因此,当磁通密度检测器相对于磁通传输部件在间隙的端部处或在间隙的端部周围运动时,由磁通密度检测器检测的磁通密度的变化率变得相对小。因此,改进了来自磁通密度检测器的输出信号的线性。此外,当假设:检测范围被限定为间隙的角范围,在间隙的角范围内对检测对象的位置进行检测,实际输出线表示检测对象的位置和磁通密度检测器的输出信号之间的关系,点O被限定为实际输出线上的点,在该点处穿过磁通密度检测器的磁通的密度等于零,理想直线被限定为穿过点O并具有理想斜率的线,最大点被限定为在输出信号为最大的检测范围内的理想直线上的点,并且最小点被限定为在输出信号为最小的检测范围内的理想直线上的点,则间隙被构造成具有至少穿过最小点、点O和最大点的实际输出线。甚至更进一步,间隙由第一磁通传输部件的第一内表面和第二磁通传输部件的第二内表面限定,并且第一内表面和第二内表面中的每个为具有恒定曲率半径的曲面。另外,间隙由第一磁通传输部件的第一内表面和第二磁通传输部件的第二内表面限定,并且第一内表面和第二内表面中的每个是能够使实际输出线沿理想直线延伸的自由形式的面(free-form surface,自由面)。而且,检测对象相对于参照部件旋转,第一磁通传输部件和第二磁通传输部件具有相对于参照部件沿检测对象的相对运动的方向延伸的弧形形状。此外,检测对象相对于参照部件线性运动,并且第一磁通传输部件和第二磁通传输部件具有相对于参照部件沿检测对象的相对运动的方向线性延伸的大致线形(直线)形状。【专利附图】【附图说明】通过下面参照附图进行的详细描述,本公开的其它目标、特征和优点变得更清楚,在附图中:图1是应用了本公开的第一实施例中的位置检测器的旋转驱动设备的构造略图;图2是沿着图1中的线I1-1I的剖视图;图3是图1中的箭头III表示的部分的放大剖视图;图4是图2中的位置检测器的剖视图;图5是图2中的霍尔元件的输出性能的示意图;图6是本公开第二实施例中的位置检测器的剖视图;图7是图6中的霍尔元件的输出性能的示意图;图8是本公开第三实施例中的位置检测器的剖视图;图9是图8中的霍尔元件的输出性能的示意图;图10是本公开第四实施例中位置检测器的剖视图;图11是图10中的霍尔元件的输出性能的示意图。【具体实施方式】基于附图描述了本公开的多个实施例。附图中相同的部件具有相同的标号,并且为了说明书的简洁,不再重复对它们的描述。(第一实施例)本公开的第一实施例中的位置检测器被应用于图1中示出的旋转驱动设备。旋转驱动设备80用于执行废气旁通阀(未示出)的开-闭驱动。在涡轮增压发动机中,废气旁通阀使围绕涡轮增压器的涡轮壳体的废气流转向。首先,基于图1解释旋转驱动设备80的构造。旋转驱动设备80设置有壳体81、箱体(case) 82、电机85、旋转体87、输出轴92和位置检测器10。壳体81具有用于电机的空腔。壳体81可被固定在车辆主体上或者被固定到附接于车辆主体的构件上。箱体82形成被固定到壳体81的开口的盖部件83。箱体82还具有从盖部件83朝向箱体82的外侧伸出的连接器部件84。电机85位于壳体81中并经电源端子93电连接到电子控制单元(E⑶)95。当E⑶本文档来自技高网
...

【技术保护点】
一种检测相对于参照部件(82)运动的检测对象(69、87)的位置的位置检测器(10、60、70、100),所述位置检测器包括:第一磁通传输部件(20、61、71、101),设置在参照部件或检测对象中的一个上,第一磁通传输部件具有第一端(22)和第二端(23);第二磁通传输部件(25、64、74、103),设置成限定第一磁通传输部件和第二磁通传输部件之间的间隙(30、67、77、105),第二磁通传输部件具有第一端(27)和第二端(28);第一磁通产生器(40),位于第一磁通传输部件的第一端(22)和第二磁通传输部件的第一端(27)之间;第二磁通产生器(45),位于第一磁通传输部件的第二端(23)和第二磁通传输部件的第二端(28)之间;和磁通密度检测器(54),位于间隙内,设置在参照部件或检测对象中的另一个上,并根据穿过磁通密度检测器的磁通的密度输出信号,其中当间隙的间隙宽度由沿着第一磁通传输部件和第二磁通传输部件之间的垂直方向对间隙的横向测量限定,相对运动的方向被限定为磁通密度检测器相对于第一磁通传输部件的运动的方向,和运动的范围被限定为磁通密度检测器在间隙内的运动的范围,时沿相对运动的方向在磁通密度检测器的运动范围的每个端部位置处的间隙宽度(gmax)大于沿相对运动的方向在磁通密度检测器的运动范围的中心处的间隙宽度(g0)。...

【技术特征摘要】
...

【专利技术属性】
技术研发人员:河野尚明山中哲尔
申请(专利权)人:株式会社电装
类型:发明
国别省市:日本;JP

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1