一种带低温冷冻机的大型氧气/氮气液化装置制造方法及图纸

技术编号:14195958 阅读:163 留言:0更新日期:2016-12-15 16:08
一种带低温冷冻机的大型氧气/氮气液化装置,主要设备配置有:循环增压机、透平增压膨胀机、液化冷箱、低温冷冻机,以及将各设备连接的管道;所述循环增压机进口连接原料氮气进料管,在循环增压机的出料管连接膨胀机增压端对压缩后的原料氮气继续增压,所述膨胀机增压端的出口管接于液化冷箱中的板式换热器中与返流低温氮气进行换热的前段压力氮气换热通道,所述板式换热器中间的前段压力氮气换热通道设置有一抽出口该抽出口连接外设的RU冷冻机,经过该RU冷冻机后再回接于板式换热器中的后段压力氮气换热通道,该后段压力氮气换热通道分叉有两路,一路连接至膨胀机膨胀端,另一路通过板式换热器中的后段压力氮气通道并从液化冷箱接出液氮产品管道;本发明专利技术通过增加低温冷冻机,优化了液化冷箱板式换热器的换热效率,使整个液化装置的冷损降低,从而达到了节能降耗的目的。

【技术实现步骤摘要】

本专利技术涉及的是一种将常温氧气/氮气降温液化成低温的带低温冷冻机的大型氧气/氮气液化装置,适用于给大型产氧气/氮气的空分装置配套,将多余的氧气/氮气液化成低温液体储存的低温装置。
技术介绍
图1所示,液化装置作为一种低温成套设备,常规的设备配置有:循环增压机NC、增压透平膨胀机E、液化冷箱CB;其中液化冷箱CB内主要设备是铝制板翅式换热器E01以及设备连接管道,液化冷箱CB表面是钢结构、面板所包围的一个封闭式箱体,内部充填珠光砂绝热防止跑冷。液化装置的主要作用是:产生冷量并通过换热交换冷箱,将约-30℃的氧气/氮气通过本装置降温至约-183℃~-193℃的低温液氧/液氮产品。液化装置的主要制冷原理是:将原料氮气N2通过循环增压机NC及膨胀机增压端ETC增压后,通过膨胀机膨胀端膨胀ET对外做功获得冷量。其流程主要概述为:原料氮气N2通过循环增压机NC加压后,引入膨胀机增压端ETC再次加压,然后进入液化冷箱CB在板式换热器E01中与返流的低温氮气进行换热,降温至一定温度后,大部分氮气进入膨胀机膨胀端ET进行膨胀制冷,小部分氮气作为液氮继续在板式换热器E01中与低温返流氮气换热降温之约-193℃时作为低温液氮产品LN抽出液化冷箱,输入液体管网。膨胀后的低温氮气返流进入板式换热器E01与常温的氮气/氧气换热后,复热至常温,抽出液化冷箱CB,引入循环增压机NC入口作为循环氮气重复使用,所以在液化装置中,氮气N2既是低温液氮的原料气,也是装置的制冷介质。常温氧气O2进入液化冷箱CB,在板式换热器E01中与返流低温氮气换热后,降温至约--183℃时作为低温液氧产品LO抽出,输入液体管网。从液化装置的设备配置来看,主要能耗设备为循环增压机NC,所以在理论计算和实际运行中如何降低循环增压机的能耗,成为整个装置节能降耗的关键;当循环增压机NC稳定运行时,其入口氮气压力和出口氮气压力是稳定的,即单位体积氮气能耗是一定的,那么要节能就要想办法循环增压机NC的氮气增压量;从流程分析可知,氮气N2增压量由进膨胀机的膨胀量和出液化冷箱的产品液氮量决定的,所以再保证产品输出量的同时要减少氮气增压量就意味着要减少去膨胀机的膨胀量,减少膨胀量就意味着整个装置的制冷量减少。从液化装置冷箱平衡分析,膨胀机制冷量等于装置冷损时才能保证一定量的液体产品输出。液化装置冷损由三部分构成:液化冷箱跑冷;液体产品输出冷箱;不可复热冷箱。而当液化装置规模一定,及输出产品一定的情况下,可以认为液化冷箱跑冷冷损和液体产品输出冷损是一定的,所以如何减少装置的不可复热冷箱是关系到是否能减少膨胀量的关键,也是整个装置节能降耗的关键。
技术实现思路
本专利技术的目的在于克服现有技术存在的不足,而提供一种在原液化装置配置基础上增加一个冷冻机配置,从而改善液化冷箱内板式换热器的换热效率,减少液化冷箱的不可复热冷损,从而减少液化装置的循环增压量,使循环增压机的电耗减低,达到节能降耗目的的带低温冷冻机的大型氧气/氮气液化装置。本专利技术是通过如下技术方案来完成的:一种带低温冷冻机的大型氧气/氮气液化装置,主要设备配置有:循环增压机、透平增压膨胀机、液化冷箱、低温冷冻机,以及将各设备连接的管道;所述循环增压机进口连接原料氮气进料管,在循环增压机的出料管连接膨胀机增压端对压缩后的原料氮气继续增压,所述膨胀机增压端的出口管接于液化冷箱中的板式换热器中与返流低温氮气进行换热的前段压力氮气换热通道,其特征在于所述板式换热器中间的前段压力氮气换热通道设置有一抽出口该抽出口连接外设的冷冻机,经过该冷冻机后再回接于板式换热器中的后段压力氮气换热通道,该后段压力氮气换热通道分叉有两路,一路连接至膨胀机膨胀端,另一路通过板式换热器中的后段压力氮气通道并从液化冷箱接出液氮产品管道;所述膨胀机膨胀端后再次接入板式换热器中的、与进入液化冷箱内的前段和后段压力氮气换热通道以及氧气换热通道进行直接换热的低温氮气换热通道,并通过连接低温氮气换热通道出口的氮气复热管道,再次回接于循环增压机进口。作为优选:所述的液化冷箱是由钢结构框架和四周冷箱板焊接而成的密闭方形箱体,内置有铝制板式换热器以及膨胀机膨胀端,内填满珠光砂保温材料;所述各设备之间通过管道连接,其中液化冷箱与低温冷冻机之间通过低温管道连接,原料氮气和氧气从外界空分装置引入,产品液氮和液氧通过真空保温管道送至液体管网或送至低温储槽储存。本专利技术是在原增压后进入液化冷箱的氮气,在液化冷箱内降至约-22℃时从液化冷箱抽出进冷冻机继续降温至约-35℃,送回液化冷箱;在液化冷箱板式换热器中,继续降温至膨胀机进口所需温度后,抽出送入膨胀机膨胀;其余部分流程走向与原液化装置同。经理论计算表明,在增加冷冻机的液化装置流程计算中,有效的改善和优化了液化冷箱板式换热器的换热曲线,使板式换热更有效,从而降低了循环膨胀量。而且,实际运行表明,液化冷箱的热端出口温差比原液化装置减小,有效降低了装置的不可复热冷损。在同样的循环膨胀量下,可产出更多的低温液体产品,有效的降低了产品的单位能耗,从而使整个液化装置节能降耗的目的得以实现。附图说明图1是现有液化装置的流程示意图。图2是本专利技术所述的液化装置流程示意图。具体实施方式下面将结合附图对本专利技术作详细的介绍:一种带低温冷冻机的大型氧气/氮气液化装置,主要设备配置有:循环增压机NC、透平增压膨胀机、液化冷箱CB、低温冷冻机RU,以及将各设备连接的管道;所述循环增压机NC进口连接原料氮气N2进料管,在循环增压机NC的出料管连接膨胀机增压端ETC对压缩后的原料氮气N2继续增压,所述膨胀机增压端ETC的出口管接于液化冷箱CB中的板式换热器E01中与返流低温氮气进行换热的前段压力氮气换热通道,其特征在于所述板式换热器E01中间的前段压力氮气换热通道设置有一抽出口该抽出口连接外设的冷冻机RU,经过该冷冻机RU后再回接于板式换热器E01中的后段压力氮气换热通道,该后段压力氮气换热通道分叉有两路,一路连接至膨胀机膨胀端ET,另一路通过板式换热器E01中的后段压力氮气通道并从液化冷箱接出液氮产品管道;所述膨胀机膨胀端ET后再次接入板式换热器E01中的、与进入液化冷箱内的前段和后段压力氮气换热通道以及氧气换热通道进行直接换热的低温氮气换热通道,并通过连接低温氮气换热通道出口的氮气复热管道,再次回接于循环增压机NC进口。本专利技术所述的液化冷箱CB是由钢结构框架和四周冷箱板焊接而成的密闭方形箱体,内置有铝制板式换热器E01以及膨胀机膨胀端ET,内填满珠光砂保温材料;所述各设备之间通过管道连接,其中液化冷箱CB与低温冷冻机RU之间通过低温管道连接,原料氮气N2和氧气O2从外界空分装置引入,产品液氮LN和液氧LO通过真空保温管道送至液体管网或送至低温储槽储存。实施例,图2中,NC表示循环增压机,ETC-ET表示透平增压膨胀机,CB表示液化冷箱,EO1表示铝制板翅式换热器,RU表示低温冷冻机。液化冷箱是一个由钢结构为框架,四周由冷箱板焊接密闭起来的一个方形装置,ET-膨胀机膨胀端和E01-铝制板式换热器都放在CB-液化冷箱内。液化冷箱内整个处于一个低温状态,为了保冷绝热的需要,整个液化冷箱内充满珠光砂。冷箱外设备NC循环增压机和ETC膨胀机增本文档来自技高网
...
一种带低温冷冻机的大型氧气/氮气液化装置

【技术保护点】
一种带低温冷冻机的大型氧气/氮气液化装置,主要设备配置有:循环增压机、透平增压膨胀机、液化冷箱、低温冷冻机,以及将各设备连接的管道;所述循环增压机(NC)进口连接原料氮气(N2)进料管,在循环增压机(NC)的出料管连接膨胀机增压端(ETC)对压缩后的原料氮气(N2)继续增压,所述膨胀机增压端(ETC)的出口管接于液化冷箱(CB)中的板式换热器(E01)中与返流低温氮气进行换热的前段压力氮气换热通道,其特征在于所述板式换热器(E01)中间的前段压力氮气换热通道设置有一抽出口该抽出口连接外设的冷冻机(RU),经过该冷冻机(RU)后再回接于板式换热器(E01)中的后段压力氮气换热通道,该后段压力氮气换热通道分叉有两路,一路连接至膨胀机膨胀端(ET),另一路通过板式换热器(E01)中的后段压力氮气通道并从液化冷箱接出液氮产品管道;所述膨胀机膨胀端(ET)后再次接入板式换热器(E01)中的、与进入液化冷箱内的前段和后段压力氮气换热通道以及氧气换热通道进行直接换热的低温氮气换热通道,并通过连接低温氮气换热通道出口的氮气复热管道,再次回接于循环增压机(NC)进口。

【技术特征摘要】
1.一种带低温冷冻机的大型氧气/氮气液化装置,主要设备配置有:循环增压机、透平增压膨胀机、液化冷箱、低温冷冻机,以及将各设备连接的管道;所述循环增压机(NC)进口连接原料氮气(N2)进料管,在循环增压机(NC)的出料管连接膨胀机增压端(ETC)对压缩后的原料氮气(N2)继续增压,所述膨胀机增压端(ETC)的出口管接于液化冷箱(CB)中的板式换热器(E01)中与返流低温氮气进行换热的前段压力氮气换热通道,其特征在于所述板式换热器(E01)中间的前段压力氮气换热通道设置有一抽出口该抽出口连接外设的冷冻机(RU),经过该冷冻机(RU)后再回接于板式换热器(E01)中的后段压力氮气换热通道,该后段压力氮气换热通道分叉有两路,一路连接至膨胀机膨胀端(ET),另一路通过板式换热器(E01)中的后段压力氮气通...

【专利技术属性】
技术研发人员:杨荣张育哲张飞明尚亚兴吴正军侯新刚徐根柱
申请(专利权)人:浙江智海化工设备工程有限公司
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1