当前位置: 首页 > 专利查询>江南大学专利>正文

基于电渗析离子转型的氨氮检测方法及装置制造方法及图纸

技术编号:9567755 阅读:93 留言:0更新日期:2014-01-15 22:46
本发明专利技术涉及基于电渗析离子转型的氨氮检测方法及装置,其利用电渗析的极化原理电解纯水生成?碱性电解水,以替代氢氧化钠溶液的效果,实现对样品溶液内铵离子的转型。装置包括:两极室电渗析槽、电磁阀、注射泵和检测池,两极室电渗析槽的两个极室由阳离子交换膜隔开,阳极室内设有阳离子交换树脂和阳极电极,阴极室内设有阴离子交换树脂和阴极电极。电渗析装置采用两极室的电解槽,电解结束后,取一定体积碱性电解水转移到检测池内,与待测水样按比例混合,并保证混合后水样pH值高于11满足碱化需求,再使用氨气敏电极进行检测,得出待测水样的氨氮含量值。不需要添加化学试剂,仅需电能和纯水就可以实现连续生成碱性电解水,绿色环保,无二次污染。

【技术实现步骤摘要】
【专利摘要】本专利技术涉及基于电渗析离子转型的氨氮检测方法及装置,其利用电渗析的极化原理电解纯水生成?碱性电解水,以替代氢氧化钠溶液的效果,实现对样品溶液内铵离子的转型。装置包括:两极室电渗析槽、电磁阀、注射泵和检测池,两极室电渗析槽的两个极室由阳离子交换膜隔开,阳极室内设有阳离子交换树脂和阳极电极,阴极室内设有阴离子交换树脂和阴极电极。电渗析装置采用两极室的电解槽,电解结束后,取一定体积碱性电解水转移到检测池内,与待测水样按比例混合,并保证混合后水样pH值高于11满足碱化需求,再使用氨气敏电极进行检测,得出待测水样的氨氮含量值。不需要添加化学试剂,仅需电能和纯水就可以实现连续生成碱性电解水,绿色环保,无二次污染。【专利说明】基于电渗析离子转型的氨氮检测方法及装置
本专利技术涉及氨氮含量检测技术,具体是一种基于电渗析离子转型的氨氮检测方法及装置。
技术介绍
氨氮广泛存在于地表水和地下水中。氨氮(NH3-N)是以游离氨(NH3)或铵盐(NH4+)形式存在于水体中。氨氮是水体富营养化的重要因素,当水中氨氮含量较高时,水会呈墨色并伴有臭味,从而对水生植物造成毒害,甚至会导致鱼虾类水中生物的死亡。并且,氨氮在微生物作用下可分解成为亚硝酸盐,当水中的亚硝酸盐含量超标时,饮用此水将使亚硝酸盐和人体中的蛋白质结合形成一种强致癌物质——亚硝胺。长期饮用含氮量超标的水同样对身体也是极为不利的。因此对于江河湖泊等水体内氨氮含量进行检测具有极为重要的意义。水体中的氨氮大多以铵离子和游离氨形式存在,并在水中保持平衡。当pH值升高到11左右时,水中的氨氮几乎全部以游离氨的形式存在。目前国内外现有的氨氮检测方法主要有:基于纳氏试剂分光光度法,基于水杨酸分光光度法,蒸懼滴定法和氨气敏电极法。其中,两种光度法都受到水样中悬浮物、钙镁等金属离子、硫化物和有机物的干扰,所以需要进行样品预处理。蒸馏滴定法同样需要采取预处理来消除干扰物的影响,且由于采用目视法判断滴定终点,人为误差较大。就本专利技术涉及的氨气敏电极法,样品无需经过蒸馏预处理,可直接测定,分析周期短,并且具有较好的选择性,检测范围广,操作简便。但此方法每次检测前都需添加氢氧化钠溶液,调节水样PH值到11以上,使得铵根离子全部转换为游离氨后方可进行测量。这种方法连续测量时一直需要消耗氢氧化钠溶液,因此带来的维护频率高,成本也高,且易引起二次污染。
技术实现思路
本专利技术的目的是克服现有技术中存在的不足,提供一种基于电渗析离子转型的氨氮检测方法及装置,利用电渗析法电解生成强碱性电解水以用于离子铵转型为游离氨,并结合氨气敏电极测量样品中氨氮浓度值的氨氮检测方法,无需添加化学试剂,快速简便,无二次污染,成本低廉,可以进行大批量连续测定。按照本专利技术提供的技术方案,所述基于电渗析离子转型的氨氮检测方法是将去离子水用电渗析法电解生成强碱性电解水,与待测水样混合,使得水样中的离子铵转型为游离氨,再利用氨气敏电极测量水样中氨氮浓度值。所述电解生成的强碱性电解水与待测水样混合,需保证混合后溶液PH值高于11满足碱化需求。电渗析装置、氨气敏电极的测量装置以及控制水流、水量的装置均由电子设备自动控制,因此可以实现脱离化学试剂的水体中氨氮连续在线检测。所述基于电渗析离子转型的氨氮检测装置包括:两极室电渗析槽的两个极室由阳离子交换膜隔开,分别为阳极室和阴极室,阳极室内设有阳离子交换树脂和阳极电极,阴极室内设有阴离子交换树脂和阴极电极,阳极电极和阴极电极分别接至直流稳压恒流开关电源的正、负极;所述阳极室上部设有进口连接至第一三通电磁阀的一个出口,所述阴极室上部设有进口连接至第一三通电磁阀的另一个出口,第一三通电磁阀的进口通过管路连接第一注射泵再与去离子水相通,阳极室底部具有一个出口,通过电磁阀连接至第二注射泵的进口,阴极室底部的出口也连接至第二注射泵的进口,第二注射泵的出口连接第二三通电磁阀的进口,第二三通电磁阀的两个出口分别接至检测池上部的第一进口和废液桶,所述检测池上部的第二进口通过第三注射泵接至待测水样,检测池上部的第三进口通过第四注射泵接至去离子水,检测池底部出口通过第五注射泵接至废液桶;所述检测池内部设有搅拌器和一支氨气敏电极,氨气敏电极信号输出端输出电位值到测量仪器。进一步的,所述阳极电极为钛基铱钽电极,阴极电极为钛电极。本专利技术的优点是:1.无需添加任何化学试剂,仅需电能和纯水就可以实现水体氨氮的连续在线检测。阴阳离子交换树脂只需定期活化就能继续使用。2.反应速度快。每次电解结束后电渗析装置两个极室内剩余的溶液继续保留,只需添加纯水即可继续电解,且两极室内残留的H+和0H_能更好的负载电流,促进提高反应速度。 3.本设备体积小巧,操作简便,待测水样无需经过蒸馏预处理,免人工维护,运行成本低廉。4.辅助自动控制手段,可以实现自动进样和出样,同时对使用环境无特殊要求,可以方便的使用于水质现场检测。【专利附图】【附图说明】图1是基于电渗析离子转型的氨氮检测装置结构示意图。【具体实施方式】下面结合附图和实施例对本专利技术作进一步说明。本专利技术利用电渗析的极化原理电解纯水生成强碱性电解水,实现对样品溶液内铵离子的转型。电渗析是指在直流电场作用下,溶液中的荷电离子选择性地定向迁移的一种膜分离技术。电流密度是指单位面积膜通过的电流,使水分子产生离解反应时的操作电流密度称为极限电流密度。当操作电流密度超过极限电流密度时,主体溶液内的离子不能迅速补充到膜的界面上,从而迫使水分子电离产生IT和0H_来负载电流,这就是电渗析的极化现象。本专利技术所使用的电渗析装置采用两极室的电解槽,阳极材料为钛基铱钽电极,阴极材料为钛电极,两个极室用阳离子交换膜隔开,同时阳极室内填充有阳离子交换树脂,阴极室内填充有阴离子交换树脂。取一定体积的纯水分别进入两个极室,当两个电极接通电源后,阴阳离子释放出的H+和0H_会先在当前溶液内离子浓度较低时,通过电场力作用定向迁移,触发电解作用。电极两侧会发生氧化还原反应:40H _4e — 2H20+02 个2H++2e —H2 ?阳极失电子发生还原反应,溶液呈酸性;阴极得电子发生氧化反应,溶液呈碱性。同时外接电源保持高压,保证操作电流密度高于溶液极限电流密度,迫使电极上电解水分子电离产生H+和0Η_来负载电流,使得阴极室内溶液0Η_浓度越来越高,pH值随之不断提高,最终成为满足要求的强碱性电解水。电解结束后生成的碱性电解水含有大量的0H_,6个小时内性质相对稳定,但长时间后碱性电解水内的0H—会与空气中的氧化性物质反应,碱性特性基本消失,因此不会造成二次污染,绿色环保。取一定体积强碱性电解水转移到检测池内,与待测水样按比例混合,并保证混合后水样PH值高于11满足碱化需求,再使用氨气敏电极进行检测,得出待测水样的氨氮含量值。如图1所示,本专利技术所述的基于电渗析离子转型的氨氮检测装置包括:两极室电渗析槽5的两个极室由阳离子交换膜6隔开,分别为阳极室和阴极室,阳极室内填充有阳离子交换树脂7,内壁上镶嵌阳极电极9,阴极室内填充有阴离子交换树脂8,内壁上镶嵌阴极电极10,所述阳极电极9为钛基铱钽电极,阴极电极10为钛电极。阳极电极9和阴极电极10分别接至直流稳压恒流开关电源4的正、负极。所述阳极室上部设有本文档来自技高网
...
基于电渗析离子转型的氨氮检测方法及装置

【技术保护点】
基于电渗析离子转型的氨氮检测方法,其特征是,将去离子水用电渗析法电解生成强碱性电解水,与待测水样混合,使得水样中的离子铵转型为游离氨,再利用氨气敏电极测量水样中氨氮浓度值。

【技术特征摘要】

【专利技术属性】
技术研发人员:杨慧中王远胡惠新陈刚陈晓东
申请(专利权)人:江南大学
类型:发明
国别省市:

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1